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Abstract

Deformable objects are an integral part of the world we inhabit, characterized by complex,

nonlinear behavior under external forces and constraints. Nearly every object humans in-

teract with exhibits some degree of deformability, and our ability to intuitively model

and manipulate such objects has been a cornerstone of human dexterity across daily life

and industrial tasks alike. Deformable materials play a crucial role in manufacturing,

logistics, and assembly processes that power high-performance sectors such as aerospace,

fulfillment, automotive, textiles, etc. Yet, despite their prevalence, many of these pro-

cesses remain predominantly manual without large-scale integration of intelligent robots,

primarily due to the inherent challenges of manipulating deformable objects with the

precision, repeatability, and quality demanded in industrial environments.

Amidst a sharp decline in the availability of skilled labor willing to perform such phys-

ically demanding tasks, the industry faces an urgent need to deploy intelligent robotic

systems that can handle deformable objects with the same resilience and adaptability

as humans. This dissertation addresses this challenge by enabling robotic manipulation

of complex deformable objects in semi-structured, high-variability environments, with a

focus on large-scale, industrially relevant objects exhibiting intricate dynamics and high-

speed interactions. Moving beyond simplified 1D and 2D cases, this work aims to tackle

the nuanced realities of a new class of complex industrial deformable objects that de-

mand precision, safety, and resilience—attributes essential for large-scale robot adoption

in manufacturing, assembly, and logistics.

A fundamental advance proposed in this dissertation is the introduction of a physics-

informed learning paradigm for robotic manipulation of deformable objects. The central

xxi



perspective is that purely data-driven approaches struggle to generalize in high-mix, low-

volume (HMLV) industrial settings where exhaustive data collection is impractical. In

contrast, integrating structured physics knowledge into learning pipelines significantly

improves generalization, reduces data requirements, and enhances model interpretabil-

ity and safety. To this end, the dissertation introduces physics-informed methods for:

(i) learning simulation parameters for large deformable sheets, (ii) sequencing complex

manufacturing tasks by capturing expert human preferences, (iii) planning manipulation

actions using simulation-based grasp planning for precision draping, (iv) modeling the

effect of tool compliance on manipulation under uncertainty, and (v) detecting failures in

deformable object processes using simulation-augmented deep learning.

The framework is structured around four core pillars: (i) Simulation-based Learning,

(ii) Advanced Learning Frameworks, (iii) Learning Physics-informed Constraints, and (iv)

Compositional Learning. Together, these ingredients form a systematic strategy for en-

dowing robots with the ability to reason about the physical consequences of their actions,

enabling safe, adaptive, and reliable operation in high-performance industrial tasks in-

volving deformable objects.

Through extensive real-world experiments—including composite sheet layup, precision

screwdriving under uncertainty, online defect detection in manufacturing, and bimanual

bin-packing of deformable packages- this dissertation demonstrates that physics-informed

learning provides a critical pathway toward safer, more robust, and scalable robotic sys-

tems for manipulating deformable objects. By marrying the flexibility of learning with the

structure of physics principles, this work takes a significant step toward the widespread

deployment of intelligent robots capable of manipulating complex deformable objects in

unstructured, real-world industrial environments.
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Chapter 1

Introduction

“The behavior of soft materials resists simplification – not because they defy

physics, but because they embody so much of it.”

— Inspired by the work of Nobel Laureate Pierre-Gilles De Gennes

1.1 Background

For times immemorial, scientists and engineers have been captivated by the

mechanics of deformable objects. Deformability, often associated with compli-

ance or softness, is not a niche phenomenon but a defining characteristic of the

physical world we inhabit. Most of the objects we interact with daily possess

some degree of deformability. The impact of deformable objects on human

evolution is so profound that many anthropologists and scientists credit the

dexterity of our soft, compliant hands as a key enabler of our success as a

species – allowing us to manipulate and craft complex tools and artifacts with

remarkable precision.

Deformable objects are becoming increasingly prevalent in industrial settings—a

shift driven by rising consumer demand for product customization and the

widespread adoption of high-performance materials such as composites. These

materials lie at the heart of several billion-dollar industries, including aerospace,
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automotive, logistics, and advanced manufacturing. From forming critical

structural components using large, flexible composite sheets to packaging and

transporting goods in soft polybags, deformable objects play an essential role

in enabling high-performance, scalable production workflows. Even the tools

used in many of these processes exhibit compliance, significantly influencing

the execution of tasks such as screwdriving, fastening, and precision assembly.

Today, as the field of robotics stands on the cusp of a new era, one defined

by widespread deployment in unstructured, real-world environments, the abil-

ity to perceive, predict, and manipulate deformable objects has emerged as a

critical frontier. Addressing this challenge is not merely academic—it is essen-

tial for automation in sectors that underpin global supply chains and modern

infrastructure. To equip robots with manipulation capabilities approaching

human versatility, we must develop methods that marry physical principles

with intelligent, data-driven control, enabling robust and explainable interac-

tion with these complex materials.

1.2 Motivation

Figure 1.1: Industrial tasks involving manipulation of deformable objects.

Deformable object manipulation is a fundamentally challenging problem due

to the complex, high-dimensional nature of soft materials. Unlike rigid bodies,

which retain a consistent shape and can be represented with simple geometric

2



models, deformable objects exhibit continuous shape changes under external

forces and constraints. Their behavior is influenced by a combination of geom-

etry, material properties, and contact conditions, making it difficult to define

coherent state representations or predict future states. Moreover, deformable

objects often vary in size, shape, and material composition, which adds an-

other layer of variability to the problem.

Humans, however, are remarkably adept at manipulating deformable objects.

Through our multimodal sensing (vision, touch, proprioception), predictive

modeling of physical dynamics, and rapid adaptation to unexpected changes,

we are able to perform complex tasks involving soft materials with ease—be it

folding laundry, assembling wiring harnesses, or packing irregular items. Our

resilience to failure and capacity for reactive behavior are critical enablers of

this proficiency. This human proficiency has historically been a cornerstone of

skilled labor in manufacturing, enabling tasks that require dexterity, adapt-

ability, and nuanced control. Our ability to manipulate deformable objects

has played a critical role in daily life and also underpinned the progress of the

Industrial Revolution itself.

However, the landscape of modern industry is rapidly evolving. The demand

for greater customization, combined with the shrinking availability of skilled

labor for physically demanding or tedious tasks, is driving a shift toward de-

ploying robots in less structured, more variable environments. Industrial set-

tings are increasingly characterized by high-mix, low-volume (HMLV) produc-

tion, where the rigid automation strategies of the past no longer suffice. To

complicate matters further, many of the tasks that remain for human workers

involve manipulating deformable components such as compliant part assem-

bly, deformable tool manipulation, fabrics, polybags, and composite materials

(Refer Fig. 1.1). These objects are inherently variable and difficult to model,

yet must be handled with high precision and care. Automating such tasks is
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not only a matter of productivity but also of safety and sustainability in a

workforce-constrained future. It is, therefore, imperative that robots gain the

ability to understand, manipulate, and adapt to deformable objects with the

same fluency as humans—this is the challenge that is directly addressed in

this dissertation.

When it comes to industrial environments, the stakes are significantly higher.

Standards for quality, precision, and safety are stringent, and any deployed

robotic or automation solution must meet these requirements reliably. Al-

though robots have proven their value in structured, repetitive tasks—especially

in automotive and electronics assembly—the next frontier lies in enabling them

to handle unstructured deformable object tasks with similar fluency. This

transition demands more than just better models or more data—it calls for a

new way of thinking about robot learning and reasoning.

This dissertation is motivated by the central question: How can we enable

robots to manipulate deformable objects with the same robustness, adaptabil-

ity, and efficiency as humans, especially in safety-critical, variable industrial

environments? The answer explored here lies in combining physics-based mod-

eling with data-driven learning to form a new class of intelligent, explainable,

and resilient robotic systems.

1.3 Research Issues

Traditional industrial environments, such as automotive assembly lines, have

long been considered structured settings. Standardization, along with signifi-

cant investment in fixtures, conveyors, and jigs, was used to reduce variability

and uncertainty. In such environments, robots could be deployed at scale

without requiring intelligence in perception or decision-making. Instead, they

executed pre-programmed motions with high speed and reliability. However,
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this paradigm breaks down when we move toward the manipulation of de-

formable objects. Pre-scripted motion plans are insufficient for these tasks,

which require dynamic adaptation based on the object’s ever-changing state.

To operate reliably, robots must sense using multiple modalities, reason about

object behavior, predict deformations accurately, and recover from failures.

These are capabilities that current automation pipelines are ill-equipped to

handle.

The problem of deformable object manipulation is not new to robotics. Prior

research has explored simplified instances involving 1D and 2D objects such

as ropes, cloths, and elastic beams. These studies often make strong assump-

tions to reduce problem complexity—assumptions that break down in real-

world, high-precision applications. Tasks demonstrated in domestic settings

(e.g., folding laundry or placing garments in a basket) have limited demands

on accuracy, speed, or safety. In contrast, many industrial tasks—such as ma-

nipulating compliant tools for assembly, packing polybag packages, or placing

composite laminates—require millimeter-level precision, failure resilience, and

compliance with strict safety standards. The manipulation of large or shell-

like deformable objects, particularly those encountered in manufacturing and

logistics, remains underexplored.

Recent progress in machine learning has enabled more capable robotic systems.

Learning-based models can extract informative representations from high-

dimensional sensor data and predict the nonlinear dynamics of deformable

materials. However, these methods come with significant limitations. Their

performance is tightly bound to the data they are trained on—the inductive

biases encoded via datasets, architectures, and downstream tasks. As a result,

they often fail to generalize to new object geometries, materials, or unseen

task conditions. This is particularly problematic in industrial contexts, where
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high-mix, low-volume (HMLV) production scenarios preclude large-scale data

collection for every variation.

Even in high-volume production settings, collecting real-world data that ad-

equately captures the full variability of deformable parts across shape, ma-

terial properties, initial conditions, and environmental interactions—is both

prohibitively expensive and time-consuming. The complexity and diversity of

deformable object behavior make it nearly impossible to build comprehensive

datasets that cover all relevant edge cases. As a result, purely data-driven

models, which often rely on large-scale, labeled datasets to generalize effec-

tively, struggle when deployed in the wild.

Compounding this issue is the nature of most deep-learning models themselves.

Despite their impressive performance in controlled environments, these models

typically operate as black boxes, offering little insight into why a prediction

was made or how the system might behave under unfamiliar conditions. This

lack of interpretability poses serious challenges in industrial contexts, where

safety, traceability, and regulatory compliance are crucial. These concerns

have created a significant barrier to the adoption of modern learning-based

techniques beyond a lab setting in real-world industrial deformable object

manipulation.

In contrast, humans are able to learn robust models of the world’s physi-

cal behavior from limited data. We leverage a deep, intuitive understanding

of physics to reason about object behavior and adapt our actions accord-

ingly. Physics-informed machine learning (PIML) aims to bring this style of

reasoning into modern AI. By embedding physical priors and governing con-

straints into data-driven models, PIML methods enhance generalization, re-

duce data requirements, and improve interpretability. This dissertation argues

that physics-informed learning provides a path forward for enabling robust,
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safe, and scalable deformable object manipulation in industrial environments.

By integrating structured physics knowledge with the flexibility of learning,

these methods offer the best of both worlds: improved efficiency in learning,

better generalization to new conditions, and greater alignment with industrial

safety and reliability standards. This hybrid approach forms the cornerstone

of the contributions presented in this dissertation.

1.4 Objectives and Scope

The overarching objective of this dissertation is to advance the deployment

of robotic systems capable of manipulating complex deformable objects in

unstructured and high-stakes industrial environments. To this end, the dis-

sertation proposes a unified, physics-informed framework that integrates the

strengths of model-based reasoning with the adaptability of data-driven learn-

ing. This framework aims to bridge the gap between theoretical modeling and

practical deployment by addressing five key research objectives:

• Learning Physics-Informed Dynamics Models: Develop methods to learn

interpretable and generalizable models of deformable object dynamics.

This includes building hybrid simulation pipelines that combine analyti-

cal physics with learned components and identifying material or inter-

action parameters that govern deformation behavior. The goal is to

achieve data-efficient learning while maintaining physical plausibility and

explainability.

• Learning Physics-Informed Manipulation Strategies: Utilize physics-based

models to inform the development of manipulation policies that are aware

of object deformation and task constraints. The objective is to enable

robots to perform high-precision manipulation in scenarios where tra-

ditional rigid-body assumptions no longer hold, such as manipulating
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deformable tools, large composite sheets, or handling soft packaging ma-

terials.

• Conditioning Task Planning on Human Preferences: Integrate expert

decision-making into planning for deformable object manipulation. By

learning from demonstrations or preference signals, the goal is to replicate

human-like reasoning that accounts for nuanced trade-offs between effi-

ciency, robustness, and safety, which are critical in high-mix, low-volume

production scenarios.

• Learning Physics-Based Defect Detection Models: Investigate simulation-

driven methods for detecting anomalies and failure modes during manip-

ulation. By generating synthetic data using high-fidelity simulators and

learning explainable models, the aim is to equip robotic systems with the

ability to detect and respond to defects in real time, ensuring safe and

resilient operation.

• Studying Complex Industrial Deformable Objects: Unlike much of the

prior work focused on simple 1D or 2D deformable objects (e.g., ropes

or small cloth patches), this dissertation focuses on complex, shell-like,

and large-scale deformable objects commonly encountered in industrial

applications. These include materials such as polybags, composite sheets,

and screwdriving, each presenting unique challenges in terms of modeling,

sensing, and manipulation.

By addressing these objectives, this work aims to push the boundaries of

robotic manipulation, offering a roadmap for scalable, reliable, and explainable

deployment of deformable object manipulation systems in real-world industrial

settings.
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Chapter 2

Foundations and Overview

2.1 Taxonomy of Deformable Objects

Figure 2.1: The three representative classes of deformable objects studied
in this dissertation. Each class presents distinct challenges across modeling,
task planning, manipulation, and failure detection, highlighting the need
for tailored, physics-informed strategies to enable effective robotic
manipulation.

A central contribution of this dissertation lies in redefining the types of de-

formable objects considered in robotic manipulation, especially in the context

of real-world industrial applications. The complexity arises from the objects’

continuously changing geometry, their sensitivity to contact and material prop-

erties, and the difficulty of modeling or predicting their dynamic behavior

under manipulation. While Chapter 1, Section. 1.4 outlined the key tech-

nological components required to enable such manipulation—simulation and
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modeling, task planning, manipulation planning, and failure detection—this

chapter shifts focus toward another central theme of this dissertation: the

classification and analysis of the deformable objects themselves. Unlike prior

studies that focus on ropes or garments in relatively constrained settings, this

work expands the scope to deformable objects encountered in high-precision

industrial environments, where material scale, function, and failure tolerance

demand a more rigorous and informed approach.

This dissertation investigates three distinct classes of deformable objects, each

portraying a different axis of complexity and industrial relevance. As shown

in Fig. 2.1, these object categories are representative of real-world challenges

that push the boundaries of current robotic manipulation methods. First, we

explore large deformable sheets, such as composite prepreg materials, which

pose significant challenges due to their scale, anisotropic mechanical proper-

ties, and the high precision required in layup operations. Second, we focus

on shell-like deformable objects, such as packages containing internal contents

with independent dynamics. These 3D structures combine external elastic-

ity with internal variability, creating a compounded modeling and planning

challenge. Finally, we consider tool compliance, where the deformability of

the end-effector itself—particularly in tasks like screwdriving—introduces non-

linear interaction dynamics that must be explicitly modeled to ensure accurate

control and robust execution.

Across all three categories, this dissertation demonstrates how traditional

methods—often designed for small-scale or low-variability deformable objects,

fail to generalize to these more complex cases. In contrast, physics-informed

learning emerges as a unifying framework that enables improved generaliza-

tion, reliability, and safety by embedding physical structure into data-driven
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models. This perspective guides the design of algorithms and systems through-

out the dissertation, providing a robust foundation for manipulating complex

deformable objects.

2.2 Physics-Informed Learning Paradigm

Figure 2.2: The four key physics-informed learning paradigms explored in
this dissertation. These ingredients—simulation-based learning, advanced
learning to enable structured dynamics modeling, physics-guided constraint
learning for optimization, and compositional learning—can be applied
individually or in combination to enable robots to effectively manipulate
the complex deformable objects studied in this work.

The technological components introduced in Chapter 1, such as modeling,

task planning, manipulation, and failure detection, have each been extensively

studied in the context of deformable object manipulation. However, this dis-

sertation presents a novel perspective on how to systematically embed physics-

based knowledge into each of these components, particularly when dealing with

the complex, industrially relevant deformable objects studied in this work.

There are several complementary ways in which physics can inform a robot’s

decision-making process. As illustrated in Fig. 2.2, we identify four key

paradigms through which physical priors can be incorporated into the learning

framework. These approaches are not mutually exclusive; instead, they can
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be applied synergistically to improve learning efficiency, generalization, and

interoperability.

1. Simulation-based learning: The first paradigm focuses on using simula-

tion and physics-based models to aid in planning and generating high-

quality synthetic data. This alleviates the need for costly and time-

consuming real-world data collection, enabling the application of data-

hungry learning techniques without sacrificing realism or relevance.

2. Advanced Learning Frameworks: In this paradigm, physical knowledge

is embedded directly into the learning frameworks—either by learning

structured representations that capture governing equations or by design-

ing architectures that reflect known physical structure (e.g., the particle-

based representation for shell-like packages in Chapter 4). These struc-

tured models help constrain the learning space and make the predictions

more grounded in real-world physics.

3. Learning Physics-based Constraints for Optimization via Loss Functions

or Representations: The third paradigm incorporates physical and task-

specific constraints directly into the learning objective. By designing

physics-informed loss functions or enforcing process constraints during

optimization, we introduce inductive biases that guide the learning pro-

cess toward feasible and safe behaviors.

4. Compositional and Modular Learning Architectures: Deformable object

manipulation tasks are often too complex to be effectively learned end-to-

end. Moreover, monolithic models can hinder interpretability and trans-

ferability. Instead, this dissertation advocates for modular architectures,

where each component or sub-task is learned separately and infused with
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relevant physics-based priors (e.g., the compositional manipulation strat-

egy in Chapter 9). This structured approach improves both explainability

and adaptability.

These four paradigms represent a practical yet flexible toolkit for integrating

physics into learning. While not exhaustive, they offer a compelling foun-

dation for enabling robust and scalable manipulation of complex deformable

objects. In the chapters that follow, we explore each of these methods in detail,

demonstrating how physics-informed learning can drive intelligent behavior in

real-world robotic systems for manipulating deformable objects.

2.3 Overview and Structure

This dissertation introduces a unified framework for physics-informed learning

to enable robotic manipulation of complex deformable objects in industrial

environments. This chapter has laid the foundation by formally defining the

three key classes of deformable objects investigated in this work and introduc-

ing the core principles of physics-informed learning that guide the methodol-

ogy.

Figure 2.3 presents a conceptual matrix that organizes the contributions of this

dissertation along three key axes: (1) Deformable object class (2D vs. 3D),

(2) Technological component (e.g., simulation, planning, execution, anomaly

detection), and (3) Type of physics-informed ingredient (e.g., simulation-based

learning, structured models, loss/constraints, modular learning). This matrix

illustrates how each chapter contributes to specific intersections within this

conceptual space.

Guided by this structure, the dissertation is implicitly organized into four ma-

jor parts, each centered on one of the technological components introduced in
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Figure 2.3: A structured overview of the contributions presented in this
dissertation, organized across two axes: the class of deformable object
(sheets, tools, packages) and the technological components (simulation,
planning, execution, anomaly detection). Each marked cell represents a
contribution where physics-informed strategies, such as simulation-based
learning, advanced learning frameworks, constraint-aware planning, and
compositional learning, were employed to address the challenges of
manipulating complex deformable objects.
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Section 2.1. Each part presents a set of contributions that address the unique

modeling, planning, and learning challenges associated with the deformable

object classes discussed in Section 2.1.

• Part I: Simulation and Parameter Learning (Chapters 3, 4, 5, 8): This

part focuses on structured representations and physical parameter esti-

mation for deformable objects. We propose methods for learning the

physical properties of large composite sheets (2D) and internal-object-

containing packages (3D). In addition, we introduce a method to learn

governing dynamics equations for complex objects, such as compliant

tools in screwdriving tasks, resulting in explainable and task-relevant dy-

namic models.

• Part II: Task Planning Conditioned on Expert Preferences (Chapter 6):

Effective deformable object manipulation must be informed by real-world

process knowledge. We show how expert demonstrations from indus-

trial workflows can be used to learn task-level constraints and high-level

decision-making strategies, enabling robots to perform context-aware and

feasible actions.

• Part III: Physics-guided Manipulation Planning (Chapters 7, 9): This

part addresses manipulation planning using physics-informed simulation

and structured models. We develop planning strategies for bi-manual

manipulation of both 2D (composite sheets) and 3D (deformable pack-

ages) deformable objects, leveraging learned dynamics models to improve

robustness and task success.

• Part IV: Failure and Anomaly Detection (Chapters 8, 10): Robust oper-

ation requires the ability to detect and respond to process anomalies. We

demonstrate how physics-informed models and synthetic data generation

can be used to train interpretable failure detection systems. These include
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detecting wrinkles in large sheets and modeling time-based anomalies in

screwdriving tasks involving tool compliance.

Furthermore, each of these Chapters has been published or submitted to peer-

reviewed forums. Chapter 3 has been published at the ASME Journal of

Manufacturing Science and Engineering [1], Chapter 4 has been submitted to

the ASME International Conference for Design Engineering Technical Confer-

ences & Computers and Information in Engineering Conference, Chapters 6 [2]

and 7 [3] have been published at IEEE International Conference on Robotics

and Automation (ICRA), The preliminary work for Chapter 8 has been pub-

lished at IEEE International Conference on Intelligent Robots and Systems

(IROS) [4], while an exhaustive work that was built up on this is submitted

to the Robotics and Computer Integrated Manufacturing Journal. Chapter 9

has been published at IEEE IROS [5], while Chapter 10 has been published

at the ASME Journal of Computing and Information Science in Engineering

(JCISE) [6].

Together, these four parts demonstrate the versatility and effectiveness of

physics-informed learning across a broad spectrum of deformable object classes

and industrial use cases. By integrating simulation-based reasoning, data-

efficient learning, and task-aware planning, this dissertation offers a unified

perspective on how intelligent robotic systems can be designed to handle the

complexities of deformable object manipulation. The proposed methods pave

the way for more explainable, resilient, and generalizable robotic solutions for

manipulating deformable objects, ultimately bringing us closer to safe and

scalable deployment in real-world industrial environments.
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Chapter 3

Learning Simulation Parameters for Large,

Sheet-like Deformable Objects

3.1 Introduction

Sheet-like deformable objects are found across nearly every domain, from ev-

eryday household items to high-performance industrial materials. They vary

widely in size, aspect ratio, and composition – from a small T-shirt to a large

bedsheet, yet humans handle them with remarkable skill. Many of these tasks

involve complex interactions between material properties, gravity, and con-

tact forces. In aerospace, for instance, the layup of prepreg composite sheets

requires carefully draping large, anisotropic materials over contoured molds

while avoiding wrinkles and misalignment. Similarly, in the automotive do-

main, tasks like positioning seat covers or floor mats demand precise adjust-

ments to achieve tight fits around complex geometries. In the textile industry,

operations such as hemming require fine-grained control of soft fabrics with

high positional accuracy. These examples highlight the intricate nature of

sheet manipulation tasks and the dexterity, adaptability, and physical intu-

ition that humans bring to them.
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The primary obstacle to robotic adoption for tasks involving large, flexi-

ble sheets is their intricate, highly nonlinear dynamics. Industrial processes

demand high-level precision, repeatability, and quality, often at production

speeds that match or exceed human performance. Reliable robots, there-

fore, require predictive models that capture sheet behaviour under gravity,

contact, and manipulation forces so that safe and efficient strategies can be

planned. While rigid-body dynamics are well understood and widely exploited

in robotics [7], those methods do not transfer directly to compliant materials.

Accurate parameter identification – bending stiffness, membrane tension, fric-

tion, damping, and more is essential for building high-fidelity simulations of

deformable sheets.

Prepreg composite layup exemplifies both the industrial importance and the

modelling challenges. Composites are experiencing double-digit annual growth

and underpin multi-billion-dollar sectors such as aerospace, wind energy, and

advanced mobility [8]. In the prepreg process, resin-impregnated sheets are

hand-placed onto tooling, then compacted ply by ply. Defects such as wrin-

kles, air gaps, and bridging arise when the sheet slides or buckles, jeopardising

structural integrity [9, 10]. Existing automated solutions – Automated Fiber

Placement (AFP) and Automated Tape Layup (ATL) handle only simple ge-

ometries; complex parts still rely on skilled labour, leading to variability, re-

work, and high cost. Automation will be viable only when a robot can predict

sheet behaviour in advance and adjust its actions on-the-fly, because once a

prepreg ply is draped, it is difficult to reposition without damage. Thus, if we

want robots to handle such a complex task, a high-fidelity simulation of such

multi-material sheets is important.

To address these challenges, this chapter presents a data-efficient, physics-

informed framework for learning the simulation parameters of large, sheet-like

deformable objects under fixed constraints. The proposed approach leverages
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Figure 3.1: Left: the simulated prepreg under external forces and
constraints. Right: the current robotic cell with two Kuka iiwa R7 robots
and one Kuka iiwa R14 robot.

high-fidelity thin-shell simulation and real-world observations to estimate key

material properties with minimal experimental effort. By incorporating prior

deformation knowledge through a thin-sheet finite element formulation and

using the VegaFEM [11] library for simulation, we construct models that are

both accurate and physically interpretable.

The learned simulation parameters are subsequently used to construct a dig-

ital twin represented by a force, damping, and mass matrix that can emulate

prepreg sheet behavior under external fixed constraints. The study then fo-

cuses on model evaluation and testing for different conditions. A detailed

comparison of the parameter model predictions and experimental data is also

presented. The proposed system enables real-time prediction of sheet dynam-

ics and supports the development of autonomous robotic cells for tasks such

as prepreg layup. As illustrated in Fig. 3.1, the learned parameters are inte-

grated into a simulation loop that supports planning, validation, and feedback
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control. We demonstrate how this approach generalizes across different ma-

terials, such as cotton, felt, and canvas, and discuss its potential in enabling

safe, high-throughput manipulation of deformable objects.

3.2 Related Work

Mechanical simulation of composite prepreg sheets has been widely explored,

particularly for predicting draping behavior over complex molds. These sim-

ulations typically represent the sheet using a mesh and aim to capture fiber

alignment, shear, and bending characteristics. One of the simplest and com-

putationally efficient approaches is kinematic simulation, which models the

interaction based solely on mold geometry [12, 13]. While fast, such models

often lack accuracy in predicting internal strain or out-of-plane deformation.

To achieve greater fidelity, elasticity-based simulations have been developed

that compute internal strain distributions within the fabric [14]. Finite Ele-

ment Analysis (FEA) models further extend this capability by explicitly sim-

ulating the deformation mechanics of cloth and composite sheets [15]. For

instance, in [16], a robot was used to place flexible material on a doubly

curved mold, where FEA models were employed to assess material conformity.

Although FEA approaches offer high accuracy, they tend to be computation-

ally expensive, limiting their use in iterative or real-time applications. In this

chapter, a new variant of FEA developed in the computer graphics commu-

nity is adopted, which offers a favorable trade-off between simulation speed,

stability, and accuracy [17, 18]. This allows the proposed system to maintain

a high level of fidelity while running at interactive rates, thus supporting fast

design iteration and in-the-loop parameter optimization.
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Comprehensive reviews of fabric simulation techniques are provided in [19],

while [20] offers an overview of recent advances in automated composite drap-

ing. Several hybrid approaches—known as progressive drape models—combine

elements of both kinematic and FEA-based methods to balance accuracy and

computational efficiency [21, 22]. Another class of simulation methods is based

on particle systems [23–26], which are computationally tractable but often lack

the physical accuracy of continuum models due to their discrete nature.

For any of these simulation approaches, accurately tuning the model parame-

ters to reflect real-world behavior is critical. For fabrics, material parameters

can be extracted using Kawabata plots [27], which characterize properties like

bending and shear under controlled conditions. However, prepreg compos-

ite sheets differ from fabrics in that they are significantly stiffer and require

higher-precision force and displacement measurements, making techniques like

Kawabata plots less practical. Instead, this chapter proposes a data-driven

method that uses FEA simulation in conjunction with optical motion tracking

to estimate material parameters. The proposed approach avoids direct mea-

surement of internal elastic forces, enabling accurate parameter estimation for

composite sheets under realistic constraints.

3.3 Simulation Model Description

This chapter employs a thin-shell finite element method (FEA) to simulate the

behavior of viscoelastic prepreg composite materials. The simulation model

is based on formulations developed in the computer graphics community [17,

18], and is summarized here for completeness. These models strike a balance

between computational efficiency and physical accuracy and, to the best of the

author’s knowledge, have not been previously applied to real-world composite

prepreg materials in industrial contexts.
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While simulation fidelity is important, computational speed is also a critical

factor, particularly for applications such as material parameter optimization

and in-the-loop planning. The method described in this chapter is capable

of interactive performance at approximately 10 frames per second, making it

well-suited for rapid design iteration and parameter learning. Domain-specific

constraints relevant to composite layup, such as surface adhesion and boundary

pinning, are incorporated into the simulation framework, along with real-time

sheet tracking and optimization routines for aligning simulation output with

real-world deformation observations.

The prepreg sheet is modeled as a triangulated mesh, where the displace-

ment of each vertex in 3D space (x, y, z) constitutes a degree of freedom in

the simulation. The material’s mechanical response is governed by internal

forces resulting from bending, shear, and in-plane stretching. These forces are

computed based on elasticity theory and serve as the basis for dynamic simu-

lation. To improve computational efficiency, the simulation also includes the

analytical computation of Jacobians for both bending and tensile-shear forces,

enabling faster convergence during parameter optimization.

3.3.1 Tensile and Shear Forces

This subsection describes the formulation used to model tensile and shear

forces within the sheet-like deformable object. The simulation operates on

a mesh representation of the sheet, where each triangular element serves as

the fundamental unit for computing internal elastic behavior. The surface

of the sheet is parameterized using a 2D coordinate space, defined by (u, v)

parameters. The corresponding 3D weft and warp vectors, denoted by U⃗ and V⃗

respectively, are derived from this parameterization. These vectors represent
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local in-plane directions of the material and need not be orthonormal after

deformation.

Figure 3.2: Undeformed(left) and Deformed(right) states of a triangle in
the mesh representing the sheet. The warp and weft vectors V⃗ and U⃗ are
used to compute the tensile and shear strains.

To illustrate the computation, consider a single triangle in the mesh in both

its undeformed and deformed states, as shown in Fig. 3.2. The 3D vertex

positions of the triangle, Pa, Pb, Pc, are mapped from their corresponding (u, v)

parameter coordinates: (ua, va), (ub, vb), and (uc, vc). The weft and warp

vectors are represented by weighted sums of the three parametric vertices of

the triangle. We can formulate a linear system of six equations:
∑
i

ruiui = 1,∑
i

ruivi = 0,
∑
i

rui = 0,
∑
i

rviui = 0,
∑
i

rvivi = 1, and
∑
i

rvi = 0, where

i ∈ {a, b, c}. The weights rui and rvi can be precomputed using the equations:

rua = d−1(vb− vc), rva = d−1(uc−ub), rub = d−1(vc− va), rvb = d−1(ua−uc),

ruc = d−1(va − vb), and rvc = d−1(ub − ua), where d = ua(vb − vc) + ub(vc −

va) + uc(va − vb). The system of six linear equations is solved to obtain the

vectors U⃗ and V⃗ given by the equation (3.1). The viscosity of the material

is given by the evolution rates or rate change of these vectors given by the

equation (3.2). The vectors are then used to compute the Green-Lagrange
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strain tensor, which consists of shear and tensile strains. The rate of change

of these strains is then derived. Equations (3.3, 3.4, 3.5, and 3.6) gives the

representations.

U⃗ =
∑

i∈{a,b,c}

ruiPi V⃗ =
∑

i∈{a,b,c}

rviPi (3.1)

U⃗ ′ =
∑

i∈{a,b,c}

ruiP
′
i V⃗ ′ =

∑
i∈{a,b,c}

rviP
′
i (3.2)

ϵuu = 1
2(U⃗

T U⃗ − 1) ϵ′uu = 1
2(U⃗

T U⃗ ′) (3.3)

ϵvv =
1
2(V⃗

T V⃗ − 1) ϵ′uu = 1
2(V⃗

T V⃗ ′) (3.4)

ϵuv =
1
2(U⃗

T V⃗ − V⃗ T U⃗) (3.5)

ϵ′uv =
1
2(U⃗

T V⃗ ′ + V⃗ T U⃗ ′) (3.6)

Deriving the weft, warp, and shear components of total elastic energy of the

triangle with respect to vertex position gives us the force applied at the jth

vertex of the triangle, given by the equation (3.7).

Fj = −
|d|
2
(σuu(rujU⃗) + σvv(rvj V⃗ ) + σuv(ruj V⃗ + rvjU⃗)) (3.7)

The stress tensor provides the values of the stresses σij used in the equation

(3.7). The relationship between stress and strain tensor is given by σ =

Eϵ+E′ϵ′ where E and E’ are the elastic and viscosity stiffness matrices of the

material, and σ and ϵ are the 3D stress and strain vector. Subsequently, the

force Jacobian necessary for the implementation and efficiency of numerical

techniques are computed. The Jacobian for ith and jth vertex where both i, j ∈

{a, b, c} is computed using the equation (3.8). If viscosity is also considered,

then another contribution given by equation (3.9) must also be considered.
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∂Fj

∂Pi
= − |d|

2

( ∑
m,n∈{uu,vv,uv}

∂σm
∂ϵn

(
∂ϵTm
∂Pi

∂ϵn
∂Pj

)

+
∑

m,n∈{uu,vv,uv}

σm

(
∂

∂Pi

∂ϵTm
∂Pj

))
(3.8)

∂Fj

∂P ′
i
= − |d|

2

( ∑
m,n∈{uu,vv,uv}

∂σm
∂ϵ′n

(
∂ϵTm
∂Pi

∂ϵn
∂Pj

))
(3.9)

The stiffness component governs how the stress-strain relationship affects the

forces acting on the triangle’s vertices. The new position of the vertices is

then found by considering internal and external forces during the simulation.

The force acting due to bending stress is also superimposed with the tensile

and shear forces to improve simulation accuracy. The following subsection

describes how bending forces are computed and incorporated to enhance sim-

ulation fidelity further.

3.3.2 Bending Forces

Figure 3.3: (Left) Two adjacent triangles in the mesh and the bending
angle θ between them. (Right) Three neighboring triangles for a triangle
under consideration are shown.
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Bending forces are computed based on the hinge angle between adjacent tri-

angles in the mesh. This chapter adopts the mathematical model introduced

in [18], which provides a stable and efficient method for modeling thin-shell

bending behavior. As shown in Fig. 3.3, two adjacent triangles in the mesh

define a hinge, with their respective normals denoted by n1 and n2. The angle

θ between these normals quantifies the local bending deformation at the hinge.

Consider the total bending energy Eb =
∑
i

ψ(θi) as a function of θ summed

over all possible hinges i of the mesh. The function ψ is an application-specific

function of the bending angle θ. We can obtain the bending force by differenti-

ating the energy with respect to the vertex position x as F (x) = −
∑
i

∇ψ and

the hessian can be obtained as H(x) =
∑
i

ψ′Hess(θi) + ψ′′∇θiT∇θi, where

Hess(θi) is the second-order derivative of θi with respect to x. In this work,

the function ψ(θ) is given by the equation

ψ(θ) = k(2tan(
θ

2
)− 2tan(

θ̄

2
))2, θ ∈ (−π, π), (3.10)

where k is a constant dependent on material properties and θ̄ is the angle

at the rest configuration. Details on how to compute the gradient and the

Hessian of the bending energy analytically are given in [18]. At each timestep,

the bending forces and the Jacobian of the forces are updated based on the

vertex positions.

3.4 Estimating Sheet Parameters

3.4.1 Overview

This section outlines the methodology used for estimating the physical param-

eters of various sheet-like deformable materials, including composite prepregs,
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Figure 3.4: Process Overview: The initial state of the sheet is defined as
the sheet configuration under initial boundary conditions. The
releasing/released sheet state is defined as the sheet behavior after
releasing one of the boundary conditions. After conducting physical
experiments, initial mesh and observed data in the form of a mesh of the
sheet are obtained from two sheet states, respectively. The data is further
fed to the optimizer to acquire computed parameters.
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cotton cloth, felt, and canvas. The parameter estimation process was di-

vided into three main stages: (1) data acquisition, (2) data preprocessing and

simulation-based optimization, and (3) parameter validation through testing.

Data acquisition was conducted in a physical environment using a guided ma-

nipulation procedure. During this phase, the sheet materials were subjected

to a controlled release of boundary constraints, and their deformation was

recorded using a 3D depth-sensing system to capture point cloud data. Two

key configurations were recorded: the initial state, where the sheet was held

under fixed boundary conditions, and the released state, observed after one

constraint was removed. These configurations were converted into mesh rep-

resentations suitable for simulation.

Subsequently, the mesh data was passed into an optimization framework oper-

ating entirely in a simulated environment. This framework iteratively adjusted

the material parameters to minimize the discrepancy between simulated and

observed deformations. The result was a set of optimized material parameters

for each type of sheet.

Figure 3.4 illustrates the overall pipeline. The full details of the parameter op-

timization framework are presented in Section 3.4.3. This method was applied

independently for all four material types, allowing a comparative evaluation

of the model’s ability to generalize across materials with varying mechanical

properties.

3.4.2 Acquisition of Training and Testing Data

The data was collected using a Hexagon RS5 laser scanner and contact probe

attached to the Romer Absolute Arm (87-Series). The class 2M laser scanner

is hand-operated and generates point cloud data. Fig 3.5 shows all scanning

equipment below. The sampling filter can be manually set to optimize the
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Settings Value
Max Capture Rate 752000 points/sec

Percentage 25 %
Exposure Time 200
Point Spacing 0.052 mm
Line Width 130 mm

Sampling Rate 51 Hz

Table 3.1: Settings used on the Hexagon RS5 laser scanner

percentage of points recorded and exposure time based on the light in the

sampling environment and the color of the scanned component to reduce noise

and capture the target locations. The settings can be seen in Table 3.1 below.

Figure 3.5: (A) Romer Absolute Arm, (B) Laser Scanner, (C) Contact
Probe, and (D) Contact probe variety

The contact probe was calibrated using a TESA TKJ 3mm Ruby Ball Probe.

The probe and laser were subject to accuracy specifications designated by the

manufacturer in Table 3.2.

Equipment Accuracy

Laser Scanner 0.028mm
Contact Probe 0.046mm

Table 3.2: Accuracy Specifications for Laser Scanner and Contact Probe
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3.4.2.1 Sheet Preparation

Figure 3.6: Sheets were prepared by attaching 289 quarter-inch markers to
each sheet

To prepare each sheet for scanning, quarter-inch markers were placed at even

intervals along the sheet in a 17x17 grid for a total of 289 markers. The markers

used were white 3M double-sided foam tape squares cut to the correct size.

The markers were raised from the surface, allowing the scanner to detect them

easily. One of the sample materials used was white in color, and the markers

had to be colored in black to be picked up by the scanner. Otherwise, the color

difference was considered optimal for scanning with the previously mentioned

settings. The four locations of the clamps obscured the markers and were

recorded separately via the contact probe for use within the simulation as a

fixed point.
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Figure 3.7: Clamps fixed the sheet configuration at four points. This is
defined as the initial state.

3.4.2.2 Sheet Deformation Data Generation

The data was collected during two trials for each material tested. Each sheet

edge was grasped using four vertically fixed clamps, allowing the sheet to rest

suspended between them, as shown in Fig. 3.7. The clamping locations were

chosen at differing and unique distances from adjacent corners. The collection

period for each trial featured a five-stage setup, with each stage introducing a

new modification to sheet positioning by moving the clamp with respect to the

room while retaining the clamping position on the sheet. The translational

movement of the clamp was chosen arbitrarily, but all movements had a change

in distance of no more than 350 mm.

The first stage required placing the sheet under the initial boundary condi-

tions of the first stage, resulting in the sheet being suspended in a relaxed,

horizontal position. The next three stages involved isolated movement of only

one grasping location to a new position, with a general increase in the z-axis,

coinciding with x- and y-axis movement toward the center of the sheet. The

last stage for every trial was the release of the clamp, allowing the material to

settle into a hanging position. Within each stage, each clamp changed location

only once and was allowed to settle into position until no visible movement
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could be detected. After clamp relocation, the new clamp locations were col-

lected via the contact probe at the beginning of each stage, and the sheet was

scanned using the laser scanner. This procedure can be observed in Fig. 3.8.

The point cloud data collected from each stage was processed using PC-DMIS

and exported as an XYZ file for post-processing. Each sheet contained thou-

sands of data points from each stage, with each marker averaging 300 points.

The simulator requires only one point from each marker, so each XYZ file was

processed through Blender software using an original Python script to isolate

the center point of each marker and export them as 3D points relative to the

world coordinate system of the scanner base. A comparative image of the

same sheet is shown above in Fig. 3.9, demonstrating the reduction from the

point cloud marker clusters to single points.

On successful construction of the initial mesh, the boundary conditions of the

sheet are changed by releasing one of the clamps. Note that the remaining

clamps should not be moved to maintain consistency throughout the process.

The sheet state after changing the boundary conditions is defined as the re-

leased state. Fig. 3.8 shows the difference between the initial state and the

released state.

Since no mesh is required to generate from the released state, the point cloud

data of such a state is clustered to represent each marker. The data set

acquired in this process is further defined as the observed data. Fig. 3.9

shows the point cloud data clustering process.

3.4.3 Model Parameter Estimation

3.4.3.1 Sheet Simulation System

The crucial element of the parameter estimation process is the composite sheet

simulation system. Fig. 3.10 illustrates the block diagram for the proposed
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Figure 3.8: (A) Labeled sequence of stages depicting sheet position
movements during one trial

Figure 3.9: Point cloud clusters (left) vs single point vertices (right) on one
sheet
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simulation system. The simulator system utilizes the initial mesh as geo-

metric information input and applies the model parameters to construct the

composite sheet model.

The model parameters are categorized into two types: 1) Material parame-

ters and 2) Integrator parameters. Material parameters consist of the surface

density and the internal force parameters: tensile stiffness, shear stiffness, and

bending stiffness. On the other hand, integrator parameters include damping

stiffness and damping mass.

Once the sheet model is constructed [28], the numerical integrator applies the

boundary conditions and external forces, such as gravity, to the sheet model

and solves the deformation equation [29]. After the predicted mesh is gener-

ated, the prediction error is obtained by comparing the predicted mesh and

the observed data. The prediction error, E, is a function of model parameters,

P , initial mesh, M , and observed data, O. Algorithm (1) is used to calculate

the prediction error function.

Algorithm 1: Prediction Error
Input:
d ∈ O
Mpre ← Simulate(P,M)
Output: Error

1 for d do
2 v ← FindClosest(d,Mpre)
3 disp← |v − d|
4 Error ← Average(disp) + 0.5 ∗Maximum(disp);

Let d be a data point in the observed data, O. After getting the predicted

mesh, Mpre, by applying P andM to the simulator, we query each d to find the

closest vertex, v, on Mpre. The prediction error is then defined as the average

displacement between v and d plus half of the maximum displacement across

the entire mesh. The prediction error is used for parameter optimization,

which will be discussed in Section 3.4.3.3.
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Figure 3.10: Simulation Process Overview: The simulator used the material
parameters and mesh information to predict sheet behavior under specified
conditions.

3.4.3.2 Parameter Boundary Selection

The model parameter identification uses a nonlinear optimizer to compute

the optimal parameters for simulating the composite prepreg. However, the

optimizer is not required to compute all model parameters. Some of these

parameters can be measured directly. As mentioned in section-3.4.3.1, model

parameters comprise material parameters and integrator parameters. Since

integrator parameters are not related to model construction, the damping

stiffness and damping mass are set to 1.0 and 0.0, respectively. The surface

density can be measured directly by scaling the sheet and dividing it by the

surface area. Therefore, the remaining parameters, tensile stiffness, shear

stiffness, and bending stiffness, are the parameters that require optimization.

To ensure the effective performance of the optimizer, appropriate upper bounds,

lower bounds, and initial values for the parameters are required. Fig. 3.11

shows the input-output diagram for parameter boundary selection. Tensile
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stiffness and shear stiffness are sampled into three categories: 1) 500, 2) 5000,

and 3) 50,000. For bending stiffness, the parameter is sampled into 1) 0.01, 2)

0.001, and 3) 0.0001.

Figure 3.11: Input-Output Diagram for Parameter Boundary Selection.

After getting three samplers for each parameter, we shuffled them and got 27

candidates to test for parameter feasibility. All candidates that cause system

failure are eliminated, and those with the smallest prediction error or com-

parable to the smallest one are highlighted. Candidate {5000, 5000, 0.001}

has the best overall performance among 27 candidates, and therefore, it is

selected to be the initial value set for the parameter optimization. Then,

the initial values are used as the median for the parameter boundary. Thus,

the upper boundary for the {Tensile stiffness, Shear stiffness , Bending stiff-

ness} is {9000, 9000, 0.0011}. The lower boundary for the parameter set is

{1000, 1000, 0.0009}.

3.4.3.3 Optimization Algorithm

The optimization library used in this work is NLOPT[30], an open-source

library for nonlinear optimization. The selected algorithm is ISRES, Im-

proved Stochastic Ranking Evolution, a global-gradient-free optimization al-

gorithm[31]. Fig. 3.12 shows the block diagram for the optimization process.
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The parameter optimizer utilizes the training sets and initial parameters as

inputs and calculates the prediction errors for each sampler. The goal of the

optimizer is to find the parameters that minimize the sum of the errors from

the training set.

{m1, . . . ,m6} ∈M,

{o1, . . . , o6} ∈ O

Popt ← argmin
P

∑k
i=1(Ei(P,mi, oi)) (3.11)

The optimization problem can be expressed as equation (3.11). Let M be the

initial meshes in the training set, which contains mesh data, mi. O is the

observed data set, which contains observed data oi. Recall that the prediction

error, Ei, is defined in the algorithm (1). Since five samples are used for

model training, k is set to 5. The optimizer tries to find the parameters

that reduce the average and maximum displacement differences between the

predicted mesh and the observed data for each training set. This error value

was set to (Average Error + 2*Max error). Once the error converges, the

identified parameters, Popt, simulate the composite sheet in real time.

3.5 Results

3.5.1 Experimental Specifics

Four materials are considered in this work: prepreg composite sheets, common

cotton cloth, felt, and canvas. Boeing Inc. supplied the composite sheet, which

came as 3ft x 4ft sheets, while all other sheets were purchased locally and were

2ft x 2ft in dimension, shown in Fig.3.13. As discussed previously, the prepreg
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Figure 3.12: Parameter Optimization Process.

composite sheet contains viscoelastic properties due to the resin contents, while

all other sheets contain no resin or viscous content. The elastic materials all

have a standard/uniform weave. Details of the elastic materials are shown in

Table. 3.3.

Figure 3.13: Sheets used for four material samples. Left: Elastic Fabric
Materials. Right: Viscoelastic Prepreg Material.

The composite prepreg material provided by Boeing came with manufacturer-

prescribed density and thickness specifications (refer to Table 3.4). The elastic
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Table 3.3: Elastic Material Measurements

Measurement Cloth Canvas Felt
Side1 611 mm 613 mm 615 mm
Side 2 611 mm 613 mm 612 mm

Thickness 0.1 mm 0.65mm 1.8mm
Mass 42.1 g 168.9 g 66.9 g

Surface Density 0.1126 kg/m2 0.4509 kg/m2 0.0018 kg/m2

materials came with no specifications and thus required density calculations

and thickness measurements, shown below in the Table. 3.3

Table 3.4: Viscoelastic Material Specifications

Measurement Composite Sheet
Side1 1.17 m
Side 2 0.975 m

Thickness 0.3 mm
Poisson’s ratio 0.3
Surface Density 0.3 kg/m2

The physical experiment process described previously was repeated twice for

each material type for a total of eight trials. In the case of the composite sheet,

two different sheets were used, as it was determined that the combination of

experimental movements and exposure to air may degrade the sheet, possibly

providing poor results. The elastic materials were all used on the same sheet

twice. Of the two trials for each material, the data collected from one trial

was used for training purposes, while the other was used for testing purposes.

3.5.2 Sheet Parameter Estimation

Estimation of sheet parameters was accomplished through the simulator, as

previously discussed. The internal parameters were considered in one state

throughout the simulation procedure. Still, research has shown that linear

elastic woven fabrics vary in many of their internal parameters due to the

anisotropic behaviors of the fabric [17]. As such, manual manipulation of
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the parameters from the initial internal parameters was needed to find an

ideal starting range for the optimization. The initial parameters were found

experimentally and were then run through the optimizer, providing the lowest

error results.

The following two tables highlight the training and testing performance of the

simulator in terms of the average error and maximum error for the training

and testing data sets. Table 3.5 gives the results for the training of fabric

materials, and Table 3.6 gives the results for the testing of fabric materials.

Table 3.5: Fabric Material Training Data

Fabric Material Training
Material Avg Error [cm] Maximum Error[cm]

Felt 2.3 7.8
Cloth 1.1 5.5

Canvas 1.4 6.0

Table 3.6: Material Testing Data

Fabric Material Testing
Material Avg Error [cm] Maximum Error[cm]

Felt 2.6 8.2
Cloth 1.6 5.6

Canvas 1.5 6.2

Figs. 3.14, 3.15, and 3.16 show the configuration of stage 5 for the felt, cloth,

and canvas sheets, respectively. In each figure, the upper image is the observed

position photograph, the middle image is the mesh generated from the scanned

point cloud data, and the lower image is an image of the simulation mesh at

the end of the stage.

The following figures depict the initial and final positions for the composite

sheet trials. Within the initial stage shown in Fig. 3.17, consistency can be

seen between the image, observed data, and simulation data.
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Figure 3.14: Trial 1 Stage 5 Results of Felt Sheet: (Upper) Observed
Position Image, (Middle) Generated Mesh, and (Lower) Simulated Mesh.

Figure 3.15: Trial 1 Stage 5 Results of Cloth Sheet: (Upper) Observed
Position Image, (Middle) Generated Mesh, and (Lower) Simulated Mesh

41



Figure 3.16: Trial 1 Stage 5 Results of Canvas Sheet: (Upper) Observed
Position Image, (Middle) Generated Mesh, and (Lower) Simulated Mesh

Table 3.7: Composite Training and Testing Data.

Composite Sheet Material
Sheet Avg Error [cm] Maximum Error [cm]

Training 1 1.6 10.2
Testing 1 1.4 13.9
Testing 2 2.2 13.6
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Figure 3.17: Trial 1 Stage 1 Results of Composite Sheet: (Upper) Observed
Position Image, (Middle) Generated Mesh, and (Lower) Simulated Mesh.

Within the final stage, there was consistent error across all material types,

however this error was higher than all other stages indicating that this position

was the most difficult for the simulator to emulate. Fig. 3.18 depicts this

position and displays results from the observed data and simulated data.

The error from the training data is shown in Table. 3.7. The optimal pa-

rameters were a bending stiffness of 4.77682e7 N/m2 and a shear stiffness of

2942.93 N/m. The optimization process began with initial values based on

the data sheet supplied by Boeing, as shown in the Table below. 3.8.

Table 3.8: Initial Optimizer Parameters

Parameter Initial Value
Sheet thickness 0.0003 [m]
Poisson’s ratio 0.3
Sheet density 0.3 [kg/m2]
Shear Stiffness 3.3e2 [N/m]

Bending Stiffness 1.1e8 [N/m2]
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Figure 3.18: Trial 1 Stage 5 Results of Composite Sheet: (Upper) Observed
Position Image, (Middle) Generated Mesh, and (Lower) Simulated Mesh.

Figure 3.19: Real-time sheet simulation result: The first row shows the
predicted mesh from the simulator. The second row shows the actual
behavior of the composite sheet.
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3.5.3 Sheet Simulation

The results obtained from the material parameter estimation are then utilized

to develop a simulation system that can predict the material’s behavior under

varied constraints. This section focuses on one of the potential applications

of such a high-fidelity simulator. In Composite Prepreg sheet layups, as dis-

cussed earlier, the sheet needs to be held at appropriate locations to avoid any

potential defects during the layup. A sheet simulation system that can predict

the appropriate locations for grasping the sheet can be instrumental in process

planning. The key elements of such a simulation system would be (1) A Sheet

Simulation Model generated using the estimated material parameters and (2)

A Real-Time Sheet Tracking System that can generate a mesh of the sheet in

real-time at high frame rates and that can then be used for comparison with

the simulated result. To demonstrate the feasibility of such a system, an ex-

periment was designed using the carbon fiber-reinforced epoxy sheet provided

by Boeing Inc.

The methodology for material parameter estimation proposed earlier was used

to generate an appropriate model for the Boeing Composite Sheet. The simu-

lation system was built using the VegaFEM library [11]. Fig. 3.20 shows the

block diagram of the proposed real-time sheet tracking and simulation process.

The dimensions of the composite sheet used in this experiment were 4ft x 3ft,

which required a multi-camera system to track the entire sheet. The real-

time sheet tracking system proposed in this study consists of three RealSense

D415 cameras. The entire sheet is captured by fusing the RGB-D feed from

all three cameras. Color-based filtering techniques are employed to filter the

prepreg sheet from the rest of the scene. Resampling is performed on the

resulting points to obtain a uniform distribution of the filtered points. The

face normals are then recomputed using these points. Surface reconstruction

45



is performed in scale space by implementing Advancing Front Surface Recon-

struction [32]. A scale-space describes the point set at a dynamic scale, and

this additional dimension allows us to control the degree of smoothness re-

quired for the reconstruction [33]. After post-processing, a surface mesh with

around 6,000 triangles was obtained.

Figure 3.20: Real-time sheet simulation process.

The composite sheet was constrained in four different states to test the sys-

tem’s performance. Initially, the sheet is constrained at four grasping loca-

tions. A human and two 7 DOF robotic manipulators KUKA iiwa R7, are used

to apply the fixed constraints. The Real-Time Sheet Tracking System captures

the mesh and grasping locations for the corresponding state. In the next step,

one of the grasping locations is released. The sheet is allowed to settle to its

minimum energy state, and the real-time sheet tracking system captures the

sheet in its respective state. This exercise is repeated for three other states by

changing the grasping locations and capturing the sheet behavior. This data

is then compared to the predictions generated by the simulation system. Fig.

3.19 contrasts the four states where the composite sheet was suspended and

the corresponding simulator predictions.

46



The proposed simulation and real-time sheet tracking system can play a pivotal

role in predicting optimal grasping locations for the draping of composite

sheets. These grasping locations can then be used to deploy a human-robot

collaborative cell where the robots can aid the human in the draping process

by holding the sheet appropriately [3]. Furthermore, the sheet tracking data

can act as a rectifying input for the grasping location in case of sub-optimal

simulator predictions. Such a conjunctive system can aid in streamlining the

prepreg layup process and achieve an overall higher degree of automation.

3.6 Summary

This chapter presented a framework for estimating material parameters for

sheet-like deformable objects and constructing high-fidelity simulation models

that capture their dynamic behavior under external constraints. The focus

was on modeling large, compliant sheets – including prepreg composites, cot-

ton cloth, felt, and canvas– using a data-driven approach grounded in elasticity

theory and implemented through an efficient thin-shell finite element formu-

lation.

A thin-shell simulation environment was developed using the VegaFEM li-

brary, enabling rapid evaluation and optimization of material parameters. A

multi-stage methodology was introduced, encompassing physical data acquisi-

tion, parameter estimation through simulation-based optimization, and valida-

tion across multiple materials. The modeling approach incorporated domain-

relevant constraints such as fixed supports and gravity, and demonstrated the

ability to simulate sheet deformation under realistic conditions with high ac-

curacy.
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The parameter identification pipeline enables the generation of digital twins

that can serve as predictive tools in downstream robotic applications. Specif-

ically, this chapter’s contributions lay the groundwork for planning and exe-

cuting robotic manipulation strategies that depend on understanding the de-

formation dynamics of flexible sheets. This capability is especially critical for

automating prepreg composite layup–a process where accurate prediction of

material behavior is essential for avoiding defects and ensuring high-quality

results.

The findings in this chapter support several broader goals of the dissertation:

• First, they demonstrate how physical priors, when embedded into simu-

lation and learning pipelines, improve both accuracy and efficiency.

• Second, they provide a validated modeling foundation for subsequent

chapters focused on task and manipulation planning (e.g., grasp planning

and sequencing for tasks involving deformable sheets).

• Finally, they highlight the importance of combining real-world sensing

with simulation to build generalizable, explainable models of soft, de-

formable sheet-like objects.

The subsequent chapters build directly on this work by leveraging the learned

simulation model for robotic manipulation planning, where simulation is used

as a surrogate model to generate feasible and task-aware robotic actions. Fur-

thermore, it’s also used to generate physics-informed synthetic data for defect

detection in sheet-like objects.
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Chapter 4

High-Fidelity Simulation of Shell-Like Deformable

Objects Using FEM

4.1 Introduction

Deformable objects have long been studied in the robotics and simulation com-

munities, particularly focusing on cases where the deformations are primarily

surface-level, such as 1D ropes, or 2D sheet-like structures like fabrics and

composite layers. However, the landscape of deformable object manipulation

is rapidly evolving. Driven by the explosive growth of online retail and con-

sumer demand for small-volume shipments, a new class of deformable objects

has become increasingly prevalent across logistics, warehouse automation, and

fulfillment industries: deformable packages.

These packages, such as polybags and padded mailers (Refer Fig. 4.1), present

a unique structure: they can be conceptually viewed as two flexible surfaces

(top and bottom sheets) fused together, containing an internal object that

moves independently within the package. This layered system introduces new

challenges as external deformations are compounded by internal dynamics,

as the mass and shape of the contained object shift unpredictably during

manipulation. Unlike simple sheets, these shell-like deformable objects require

49



specialized modeling and planning approaches that account for both surface

compliance and internal mass movement, making them fundamentally different

from traditional deformable systems studied in robotics.

Figure 4.1: Examples of deformable packages made from various materials
used in the fulfillment industry. The internal object, a tablet in this case, is
enclosed within the package, demonstrating the challenge of handling such
deformable structures.

Despite their potential, robotic systems face significant challenges in handling

deformable packages due to their complex nature. In large-scale fulfillment

centers, these packages are primarily handled using suction-based end effec-

tors, as vacuum gripping is well-suited for their smooth, non-porous surfaces

(Refer Fig. 4.2). The primary task in these environments involves picking up

a package from a moving conveyor belt and placing it into a designated bin for
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sorting, packaging, or shipping. However, unlike rigid boxes, deformable pack-

ages undergo complex shape changes when manipulated, making traditional

rigid-body suction-based grasping strategies ineffective.

Figure 4.2: Example of a robotic cell using a suction-based tool to pick and
place a deformable package into a bin, where failures can occur at any
stage of the process.

Further complicating the problem, these packages often contain loosely packed

internal objects that shift dynamically based on the robot’s motion. This in-

ternal movement alters the package’s center of mass and deformation char-

acteristics, making it difficult to anticipate failure modes and ensure stable

manipulation. As a result, robotic systems must account for the package’s

external deformability as well as the complex interplay between the internal

object and the surrounding flexible material.

Although suction-based manipulation is effective in handling such complexi-

ties, several failure modes can still disrupt the process, leading to inefficiencies

in the form of slower trajectories and the risk of potential package damage if

trajectories are too fast. The three primary failure modes (Refer Fig. 4.3)

encountered when handling deformable packages include: (1) Loading Fail-

ures: The suction cup fails to establish a secure grip, often due to insufficient

suction or improper seal due to excessive surface irregularities; (2) Peeling
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failure: Wrinkles or folds in the package can cause premature loss of suction,

resulting in the package detaching from the end effector and (3) Shear fail-

ure: Rapid movements or improper trajectory planning can lead to excessive

lateral forces, breaking the suction seal and causing package drop. These fail-

ures primarily stem from the way the package deforms during manipulation

and how the internal object motion further influences these deformations. The

interaction between the shifting internal mass and the flexible packaging mate-

rial introduces instability, making it challenging to predict and prevent failure

modes.

Figure 4.3: Illustration of three failure modes in package handling,
primarily caused by wrinkles from package deformation and the dynamic
motion of the internal object

Human operators effortlessly adapt to such variability in package shape, weight

distribution, and internal motion, building an intuitive model of the deformable

package-object system to manipulate it effectively. Similarly, enabling robots

to autonomously handle such packages requires developing a precise model

of this multi-object deformable system, a problem that remains largely unex-

plored in robotics. While challenging, creating such a simulation model could

accelerate the large-scale adoption of robotic automation for these tasks. A

well-designed simulation can predict package deformations and internal object
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dynamics, allowing for the automated computation of optimal manipulation

trajectories. These trajectories/policies must strike a balance between safety,

minimizing failure risks leading to package drop, and efficiency by executing

trajectories at maximum feasible speeds.

Recent advancements in learning-based manipulation have shown promise in

equipping robots to handle the complexities of deformable package manipu-

lation. These methods are particularly appealing for warehouse automation,

where robots must adapt to diverse package conditions while ensuring safety

and reliability. However, a major challenge of learning-based approaches is

their reliance on large, high-quality datasets to provide informative induc-

tive biases for robust policy training. Data collection in real-world warehouse

environments is expensive and time-consuming due to constantly changing

workspace layouts and package attributes. Even minor variations in package

properties can necessitate extensive fine-tuning, further increasing the data

burden. A common strategy to mitigate this challenge is training robotic

policies in simulation, where data generation is scalable, controlled, and re-

producible. However, to the best of our knowledge, no existing simulation

framework captures both deformable package behavior and internal object dy-

namics, creating a significant gap in transferring learned policies to real-world

settings.

Physics-based simulators are widely used for rigid-body manipulation, but

modeling deformable packages, especially those with internal objects and cou-

pled dynamics, remains challenging due to complex material properties, contact-

rich interactions, and high computational costs. Soft-body simulation [34, 35]

offers a promising solution, enabling high-fidelity physics modeling for efficient

policy learning. Unlike conventional simulation methods, these simulators

leverage structured physics priors, improving data efficiency, reducing sample

complexity, and enhancing generalization. Building on these advancements
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and addressing the challenges of deformable package manipulation, we develop

a physics-based simulation framework for multi-object deformable packages.

This simulation is designed to compute optimal trajectories for safe and effi-

cient robotic manipulation, ensuring seamless transfer to real-world conditions.

This chapter introduces a physics-based simulation framework for modeling

deformable packages with internal dynamics. The proposed framework uses a

hyperelastic model that captures both package deformation and internal object

dynamics. The model represents the package as a hyperelastic triangular mesh

with bending and elastic properties, while the internal object exhibits inter-

dependent motion within the deformable structure. Suction-based constraints

are incorporated to simulate interactions with a suction gripper, ensuring real-

istic manipulation dynamics. To bridge the sim-to-real gap, real-world defor-

mation data is collected using a motion capture system for system identifica-

tion, refining simulation parameters to match physical behavior. Additionally,

a parallelized simulation environment is developed for scalable, parallelized

training of manipulation policies and trajectory optimization, enabling robots

to adapt to diverse package dynamics.

The contributions of this chapter are summarized as follows:

1. A high-fidelity simulation model of a deformable package with internal

object dynamics

2. A simulation parameter learning framework that employs a structured

loss to capture the nuances of the deformable package system accurately

3. An environment for parallelized training of robotic manipulation policies

in simulation
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The proposed approach is validated through real-world package transport ex-

periments, demonstrating that the proposed simulation model accurately cap-

tures package deformation and object dynamics. The framework is computa-

tionally efficient and enables robots to adapt quickly to deformable packages

in dynamic logistics settings. By integrating real-world deformation data,

we enhance the development of safer and more efficient manipulation strate-

gies. Additionally, in Section 4.8, we explore how this framework optimizes

package handling efficiency and generates safer, more reliable trajectories for

deformable object manipulation.

4.2 Related Works

4.2.1 Deformable Object Simulation

Researchers have successfully applied simulation across various deformable

materials: 1D (rope) [36], 2D (fabric) [37, 38], 3D (elasto-plastic objects)

[39, 40], and combinations of liquid, fabric, and elastoplastic objects [41–43].

While these works demonstrate a single-object system in simulation for var-

ious deformable materials, the specific challenges for simulating multi-object

systems with constrained deformations - particularly packages with internal

objects - remain underexplored. Our framework addresses this gap by devel-

oping a hyperelastic model that accurately captures the intricate dynamics of

package-object interactions while maintaining computational efficiency.

Various numerical methods have been applied to the modeling of deformable

objects, each with distinct advantages for particular material behaviors. The

Material Point Method (MPM) has been employed for materials undergo-

ing large deformations and topology changes [39, 44], while Position-Based

Dynamics (PBD) offers computational efficiency and unconditional stability
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for real-time applications [36, 45]. The Finite Element Method (FEM) re-

mains the gold standard for accurately modeling hyperelastic materials [40,

46], with implicit integration schemes providing superior stability for stiff ma-

terials. Our work employs implicit Euler integration with FEM to capture the

complex interactions between deformable packages and internal objects while

maintaining numerical stability.

The development of specialized software frameworks has been crucial for mak-

ing simulation accessible and computationally efficient, enabling researchers to

implement complex physical models without rebuilding systems from scratch.

Several notable frameworks [47–49] have emerged recently to address this need.

For multi-physics simulation, GradSim [46] combines differentiable physics

with differentiable rendering to jointly model scene evolutions and appear-

ance. NVIDIA Warp [34], which we employ in our work, incorporates the

computing engine from GradSim, and offers a GPU-accelerated Python frame-

work supporting both rigid and soft body simulation, with particular strengths

in parallel computation and handling complex material models. We selected

Warp for our implementation due to its efficient GPU utilization, flexible ma-

terial modeling capabilities, and robust contact handling, which are essential

for accurately simulating the interactions between deformable packages and

internal objects at interactive rates.

4.2.2 System Identification and Policy Learning

System identification helps calibrate simulation parameters in mathematical

models based on measured data. Differentiable simulation has been applied

to estimate cloth stiffness and elasticity [37, 38, 46], though most studies val-

idated parameter accuracy in simulated environments rather than real-world

settings. Notable exceptions include DiffCloud [50], which utilized DiffSim
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[47] to perform parameter estimation for cloth in quasi-static states using real

point clouds. In [51], the authors extended estimation to include cloth dynam-

ics using point cloud data. Our work not only aims to calibrate package ma-

terial parameters but also to align internal object positions. To capture more

comprehensive information, we employed motion capture systems to track the

dynamics of both the package and its internal object.

Traditional simulation-based approaches for manipulation policy learning [3,

6, 52, 53] have primarily relied on sampling-based data collection, with lim-

ited focus on multi-object systems. More recent work has explored the ma-

nipulation of elastoplastic objects [54–56] and cloth [38, 57, 58], advancing

simulation techniques for deformable materials. While studies have begun ad-

dressing deformable package simulation [5] and manipulation constraints [59],

we extend these efforts by developing a high-fidelity multi-object simulation

framework that captures real-world package interactions and enables policy

learning through our high-performance simulation pipeline.

4.3 Problem Formulation

Consider an agent A manipulating a deformable thin-shell package P. Let

Ψpackage be the set of parameters governing P’s deformation and dynamic

behavior. The package P contains an object O, which is constrained to move

within P. The dynamics and motion of O are determined by its corresponding

parameter set ΨO. Thus, we define a multi-object system consisting of P and

O manipulated by A and represented by the parameter sets {ΨP ,ΨO}. This

system as a whole is subjected to external forces Fext and constraints C, which

govern its evolution over time.

P is grasped by A via an interface I, characterized by parameters Aµinterface.

This interface imposes constraints (C) on P. In our case, I represents a suction
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Figure 4.4: Overview of our proposed simulation parameter identification
framework. As depicted, we have a real-world data collection phase, where
we collect a set of robot trajectories and observe package deformation and
object dynamics. Then we learn the corresponding parameters for our
simulation to generate the model of our system.

cup interface between the robot and the package, but our formulation remains

generalizable to non-suction-based interfaces. Similarly, we define PµO to

describe the interface parameters governing interactions between O and P.

These interface parameters, i.e., µ, determine how the objects interact with

each other (see Section 4.4.3 for details). Additionally, the agent A excites

the package-object system by applying external control inputs Uext, primarily

through end-effector trajectories τ executed to manipulate P for a given task.

Additionally, we have external forces Fext that include gravitational forces

acting on the system.

At a given time instance t, we define XP
t and XO

t as the states of the package

and the object, respectively. Our objective is to learn the parameter sets Ψ

and µ of a function Φ that models the behavior of the package-object system.

Given an external control inputs U , forces Fext and constraints C, this function
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should accurately predict XP
t and XO

t . Thus, we formulate the following

problem:

ΦΨ,µ(F
t
ext, U

t) 7→ XP
t , X

O
t (4.1)

Where Φ represents the simulation model, U t represents the control input

from the commanded robot trajectory τ at the time t, and Fext denotes the

corresponding external forces acting on the system at time t due to gravity

and the robot’s acceleration.

4.4 Methodology

4.4.1 Overview

To model the function Φ, our proposed methodology consists of four key

components (Refer Fig. 4.4): (1) A Real-World Data Collection Stage, (2)

Package-Object Representation, (3) The Simulation Framework, and (4) The

Real-to-Sim Parameter Learning Framework. Our data collection process is

detailed in Section 4.6, where we describe how data is collected in alignment

with our system representation, as outlined in Section 4.4.2. We adopt a

particle-based representation [37] for the deformable package P, a widely used

approach for deformable objects due to its ability to capture intricate de-

formations. Moreover, modeling a closed package containing another object

introduces challenges that require careful considerations during initialization

and simulation, as discussed in Section 4.4.2.

Our proposed framework has the potential to serve as a valuable tool for the

robotic logistics industry and other applications involving deformable objects,

where learning safe and efficient policies is important. Therefore, the choice
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of the simulation environment is crucial, as both simulation fidelity and com-

putational efficiency directly impact performance. Recent advancements in

soft-body simulators have made them strong candidates for learning complex

manipulation policies [42]. These simulators provide access to high-fidelity de-

formation information, enabling end-to-end learning of manipulation policies.

As described in Section 4.4.3, we employ NVIDIA Warp as our simulation envi-

ronment due to its GPU acceleration capabilities, which enhance computation

efficiency in optimization while maintaining high fidelity through advanced

representations of deformable objects.

A key component of our system is the Bayesian optimization-based parameter

learning module, which, given real-world data, minimizes the real-to-sim gap

by learning the desired parameter set Ψ of the function Φ. This is achieved

by reducing the discrepancy between observed system states in the real world

and their corresponding behavior in the simulation environment (Refer to Sec-

tion 4.4.4). Through this approach, we construct a simulation framework that

facilitates robotic manipulation of deformable packages containing dynamic

objects. Additionally, we demonstrate how this simulation model can be lever-

aged to learn manipulation policies for package transport in Section 4.5.

4.4.2 System Representation

The package P is modeled as a two-layer hyperelastic shell structure with

thickness t, discretized in a particle grid M × N × 2. This dual-layer ap-

proach effectively captures the physical structure of packaging materials with

finite thickness, enabling the model to represent realistic deformation behav-

ior of both the upper and lower surfaces during manipulation. The surface is

tessellated into triangular elements, with each 2 × 2 particle cell subdivided

into two triangles. As illustrated in Figure 4.5a, the first triangle is formed

60



by connecting the bottom left particle with its right and upper neighbors,

while the second triangle connects the top right particle with its left and lower

neighbors. This tessellation approach ensures a balanced distribution of de-

formation forces across the surface. The three particles group is modeled as

a triangular finite-element unit characterized by elastic stiffness ktri,e, damp-

ing ktri,d, and adhesion ktri,a, which collectively form part of the parameter

ΨP governing P’s deformation. To capture out-of-plane deformation behav-

ior, bending elements are introduced between adjacent triangular elements.

The calculation of bending energy follows the formulation proposed by [60],

which models the angular displacement between neighboring triangles, and the

bending component is modeled as an edge and measured using elastic stiffness

kedge,e and damping kedge,d, which are remaining parts of the parameter set

ΨP . The edges connecting two layers also share the same structure of triangles

and edges.

The interface I between agent A and package P consists of n suction cup units

arranged in a circular configuration, where each suction cup is positioned at

an angle θi, where i ∈ {1, 2, . . . , n}, along a circle with a radius rcup from the

center. Each suction cup unit is modeled as a particle grid.

The particle grid with dimensions N cup
θ × N cup

r representing circumferential

and radial discretization of the cup contact surface is shown in Figure 4.5b.

This grid is represented as a hyperelastic shell structure parameterized by

elastic stiffness kcup,e, damping kcup,d, and adhesion kcup,a. For the cylindrical

portion, we use a hollow cylinder-shaped particle grid discretized as N cyl
θ ×

N cyl
r × N cyl

z . This hyperelastic mesh is constructed using tetrahedral FEM

elements with a Neo-Hookean energy density following [61]. The cylindrical

component is parameterized by Lamé parameters µcyl and λcyl, and damping

kcyl,d. This comprehensive representation enhances the fidelity of deformation

behavior under vacuum-induced stress.
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The vacuum-based adhesion phenomenon is represented by the interface pa-

rameters Aµinterface characterizing the interaction between the suction cups

and package through a system of radially distributed springs connecting the

cup’s ring-shaped particles to the closest particles on the upper layer of the

package. Each connection is characterized by a spring stiffness kspr,e and

damping coefficient kspr,d as part of Aµinterface. While this simplification does

not explicitly model vacuum forces, it captures the essential mechanical cou-

pling between the suction cup and package surface during manipulation.

The internal object O is represented at the center between the two deformable

layers of P. The interface parameters PµO describe the contact between O

and the package layers, defined as soft contact characterized by contact stiff-

ness kcon,e, damping kcon,d, and friction coefficient µcon. This representation

accounts for the challenges of modeling a closed package containing internal

objects, particularly how these contents influence deformation behavior during

manipulation.

This system representation forms the foundation for our simulation framework

described in Section 4.4.3, enabling the implementation of the function ΦΨ,µ

that maps external forces F text and control inputs U t to the states of the

package XP
t and object XO

t

4.4.3 Simulation Framework

Simulating a complex multi-object system with deformable components, as

in this work, presents unique challenges. The model must accurately cap-

ture the nuanced deformations of a two-layered package under manipulation

constraints, external forces, and gravity while also handling contact dynamics

and suction-based coupling. In logistics and warehouse automation, where
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(a) Package particle cell unit (b) Suction cup unit

Figure 4.5: System Representation Overview: Each element of the package
and suction cup is modeled using particles connected by edges to simulate
elasticity and bending. Additionally, particle radius accounts for adhesion
and compression in the deformable components.
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speed and efficiency are critical, high-speed simulation is essential for seam-

less deployment. This demands a high-fidelity framework that supports cou-

pled multi-object interactions with diverse material properties. High-fidelity

physics information enables safe trajectory optimization and policy learning,

ensuring fast, safe, and reliable package handling. Additionally, the simulation

must balance fidelity and computational efficiency to enable precise system

identification and execution in practical robotics applications.

Soft-body simulators offer a crucial advantage over traditional physics engines

by addressing key challenges in modeling complex deformable interactions.

They achieve this through two main capabilities: (1) they enable efficient opti-

mization by providing structured representations of system dynamics, allowing

for more precise policy learning, trajectory optimization, and system identifi-

cation compared to sampling-based and finite-difference approaches. (2) They

leverage parallel computing architectures to achieve high-speed simulations,

sometimes running significantly faster than real-time for simpler systems, even

in scenarios involving intricate contact dynamics and deformable objects.

When evaluating potential simulation frameworks for our application, we con-

sidered several critical factors as mentioned above: high-fidelity physics, ma-

terial model flexibility, computational efficiency, and extensibility for imple-

menting custom physics for specialized components like suction cups. Af-

ter comparing several options including DiffTaichi[48], MJX[62], and Nvidia

Warp[34]. We selected Warp as our simulation framework due to its compre-

hensive fulfillment of these requirements.

While DiffTaichi offers flexibility for modeling dynamical systems, it lacks

essential features such as URDF import and kinematic chain generation, re-

quiring extensive custom implementation compared to general-purpose physics
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engines. Similarly, MJX struggles with handling large numbers of contacts ef-

ficiently, as it precomputes all potential contacts rather than resolving them

dynamically. In contrast, NVIDIA Warp leverages parallel computation to

accelerate simulation while providing built-in physical models and integrators

that streamline development. Its support for FEM techniques makes it well-

suited for our package-object system, and its interoperability with PyTorch

facilitates seamless integration with learning-based frameworks. By distribut-

ing particle updates, constraint solving, and contact resolution across GPU

cores, Warp enables high-speed simulation, achieving rates exceeding 60 Hz

even for complex systems with over 1,000 particles.

Figure 4.6: The simulation of the deformable package, suction cup, and
internal object in our proposed simulation environment

Our implementation (Refer Fig. 4.6) leverages several key components of

the Warp framework to realize the system representation described in Section

4.4.2. We use Warp’s particle system to represent the vertices of both the

package’s two-layer structure and the suction cup array, constructing trian-

gular meshes according to our earlier definitions. The force computation for
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hyperelastic materials and rigid bodies is handled by Warp’s built-in semi-

implicit Euler integration scheme. For actuation, trajectory control inputs are

converted to timestamped velocity commands for the suction cups, which we

implement through a customized kernel function.

Warp’s GPU-accelerated computation, efficient contact handling, and soft-

body physical modeling capabilities make it an ideal framework for simulating

and optimizing our complex package-object system. Its ability to efficiently

model large-scale deformable interactions enables accurate system identifica-

tion and rapid policy learning, overcoming the computational bottlenecks of

traditional simulation methods. This approach directly addresses the chal-

lenges of robotic manipulation in logistics, ensuring both high-fidelity simula-

tion and scalable deployment.

4.4.4 Real-to-Sim Parameter Identification

The package (P), Object (O), and the suction cup system are characterized

by a set of parameters, (Ψ, µ), as described in Section 4.4.2, that governs

specific aspects of the system’s response to external forces and constraints. For

instance, the parameters ktrie,e and ktri,d primarily influence the deformation

behavior of the package, whereas kcon,e predominantly affects the motion of

the object O inside the package. Recognizing these distinctions is crucial, as

it informs the design of our learning framework for parameter identification.

Leveraging this understanding, we develop a method to infer these parameters

from real-world data (see Section 4.6).

Now, given that our simulation model represents the deformable package P as

a system of particles with grid size M×N×2, it is crucial to collect real-world

data that provides congruent information for learning the simulation parame-

ters. Additionally, tracking the position of the internal object O is essential.
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Section 4.6 details our experimental setup and data-collection strategy to ob-

tain this information. Specifically, we employ a motion capture system with

reflective markers placed on the package, the object, and the suction tool to

record timestamped trajectory data. Consequently, our observation set O con-

sists of timestamped position data of the package particles, the object, and the

robot end-effector, i.e., the suction tool’s position and orientation. Notably,

these markers are required only during the training phase; during execution,

our model can infer this information seamlessly. Thus, no markers or motion

capture system are needed for actual robot deployment (see Section 4.6).

From our data collection framework, we receive access to a dataset of times-

tamped trajectories Dreal = {τ real1 , τ real2 , . . . , τ realn }. Where,

τ realn = {(Xreal
0 , U real0 ), (Xreal

1 , U real1 ), . . . , (Xreal
T , U realT )}

is a timestamped trajectory consisting of information of system state Xt

and the corresponding control input Ut at a given time instance t. Here

Xt = {XP
t , X

O
t } is the state of package-object system. The control inputs

Ut are the robot’s end-effector position, orientation, velocity, and acceleration

parameters at a given time t. Now, given this dataset Dreal, we use our sim-

ulation framework described in Sections. 4.4.2 and 4.4.3, where we initialize

the P and O with the corresponding initial states and constraints. During

initialization, we can only control Uo, i.e., the control input, and the con-

straints, i.e., the contact between the suction cup and the package. Under the

external forces, the package-object system assumes a state Xsim
0 . We then

simulate the entire trajectory τ reali in our simulation environment and observe

the corresponding states at the timestamps t = 0 : T . This process constructs

a corresponding dataset of simulated trajectories, Dsim, which we use to learn

the simulation parameters Ψ. Our parameter estimation framework is detailed
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in Algorithm 2, where we employ the Bayesian optimization [63] framework

to optimize Ψ.

Algorithm 2: Learning Simulation Parameters via Bayesian Optimization
Data: Real-world Trajectory Dataset: Dreal
Input: N : Number of Optimization Iterations,
Φ: Deformable Simulation Model,
Fext: External Force (Gravity),
G: Gaussian Process Surrogate Model
Result: Ψ∗

P ,Ψ
∗
O,

P µ∗O: Optimized Simulation Parameters
Initialize: Initialize search space for ΨP , ΨO, PµO
Fit initial Gaussian Process G using random samples
i = 0

1 while i ≤ N do
2 for τ realbatch ∈ Dreal do
3 Sample candidate parameters ΨP , ΨO, PµO from acquisition function
4 Xsim

batch = Φ(ΨP ,ΨO,
P µO, U

real
batch)

5 LbatchΨP
= CD(Xreal

Pbatch
−Xsim

Pbatch
)

6 Lbatch
ΨO,PµO

= ||Xreal
Obatch

−Xsim
Obatch

||22
7 Lbatch = LbatchΨP

+ Lbatch
ΨO,PµO

8 Update G with new observation (ΨP ,ΨO,
P µO,Lbatch)

9 Select the next parameters by optimizing the acquisition function over G
10 if Lbatch < Lmin then
11 Lmin = Lbatch
12 Ψ∗

P ← ΨP
13 Ψ∗

O ← ΨO
14 Pµ∗O ←P µO

15 i++

As discussed in Sections 4.4.1 and 4.4.2, each parameter in the full parameter

set Ψ contributes uniquely to the system’s dynamics. To ensure our opti-

mization framework captures this structured influence, we design distinct loss

functions that appropriately guide the optimization process. Specifically, for

optimizing the package parameters, we employ the Chamfer loss, defined as

follows:
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LΨP =
1

2|X realP |
∑

xreali ∈X real
P

min||xreali −X simP ||2+

1

2|X simP |
∑

xsimj ∈X sim
P

min||xsimj −X realP ||2 (4.2)

Chamfer loss is well-suited for training because it directly minimizes the dis-

crepancy between simulated and real particle positions, ensuring that the sim-

ulated package deformation closely matches real-world behavior. By penal-

izing the distance between corresponding particle sets in a trajectory pair

(τ simi , τ reali ), Chamfer loss enforces fine-grained spatial alignment without re-

quiring explicit point correspondences. This makes it particularly effective for

capturing complex deformations, as it naturally handles variations in particle

distribution while maintaining robustness to minor noise in the dataset.

Similarly, for optimizing the object parameters ΨO and the interface parame-

ters PµO, we utilize the Mean Square Error (MSE) loss function to effectively

guide the optimization of these parameters:

LΨO,PµO = ||Xreal
O −Xsim

O ||22 (4.3)

We specifically rely on O’s state observations for optimizing the interface pa-

rameters, as our experiments indicate that O’s position is primarily influenced

by these parameters, which govern contact forces and friction. Thus, our opti-

mization process jointly refines the simulation parameters to enhance accuracy.

The overall loss function, LD, as defined in the Algorithm. 2 is the weighted

sum of the individual loss terms in Eqs. 4.2 and 4.3, ensuring that each set

of parameters is optimized accordingly. This structured approach allows us

to learn simulation parameters that accurately reproduce the dynamics of our
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multi-object system. Furthermore, as outlined in Algorithm 2, we optimize

the parameters using the Bayesian optimization framework over N epochs.

Bayesian optimization excels in efficiently exploring the parameter space, es-

pecially when the objective function is complex, noisy, or expensive to evaluate.

A key component of this framework is the acquisition function, which guides

the search for optimal parameters by balancing exploration and exploitation.

The acquisition function evaluates the utility of sampling a particular set of

parameters based on the current probabilistic model of the objective function.

By selecting the parameters that maximize the acquisition function, we en-

sure that each iteration improves our understanding of the parameter space

and helps identify regions with high performance.

In our approach, the acquisition function helps us prioritize promising regions

for parameter updates, ensuring that we avoid redundant evaluations and focus

computational resources on the most informative areas. This leads to stable

convergence with fewer iterations, making the optimization process computa-

tionally efficient while maintaining high-quality results. The combination of

the probabilistic model and the acquisition function makes Bayesian optimiza-

tion particularly powerful for parameter estimation tasks, enabling robust and

reliable learning even with limited data.

4.5 Manipulation Policy Learning

The proposed simulation model is designed to support both online planning

and offline learning of safe and efficient manipulation policies. Prior work

[64] has demonstrated the importance of simulators in enhancing the learning

of manipulation policies, particularly for complex robotic tasks, by providing

valuable inductive biases. Our framework leverages these biases to enable both

data-driven policy learning and model-based trajectory optimization. The
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ability to capture high-frame-rate deformation information further enhances

the model’s applicability to online planning, offering a powerful solution for

tackling dynamic manipulation tasks with precision and efficiency.

One of the standout features of our approach is the use of NVIDIA Warp,

a CUDA-based framework optimized for GPU computation. Massive paral-

lelization is essential for reinforcement learning (RL) applications, as training

requires extensive exploration across diverse scenarios. By leveraging GPU

acceleration, we simulate multiple training instances simultaneously, drasti-

cally reducing policy optimization time. This level of parallelism is crucial

for large-scale learning, where sample efficiency and computational speed are

fundamental constraints.

In high-mix, high-volume environments such as logistics and warehouse au-

tomation, where speed and efficiency are crucial, this parallelism marks a

significant advancement in policy learning. The ability to train and refine

policies at scale enables the rapid deployment of learned behaviors in real-

world applications. While the primary focus of this work is on our simulation

model and parameter identification framework, we also highlight the practical

applicability of our differentiable simulation system by implementing an RL

Gym [65] environment. This open platform enables the robotics community

to train their own RL-based manipulation policies efficiently and in a scal-

able manner. Additionally, our simulator facilitates model-predictive control

(MPC), enabling the optimization of robot trajectories for safe and efficient

motion generation. This capability is crucial for handling deformable objects

in real-world applications, ensuring that the resulting motions adhere to safety

constraints while maximizing efficiency.
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As a demonstration, we train a Proximal Policy Optimization (PPO)-based

policy for package transport. The primary objective of this policy is to min-

imize the internal object movement within the package and reduce its de-

formation curvature near the suction cup to ensure stable grasping. This

example highlights how our simulator enables large-scale policy learning while

maintaining physically meaningful constraints that are crucial for real-world

deployment.

By integrating high-fidelity physics with reinforcement learning and model-

based control, our approach bridges the gap between soft-body simulation and

practical robotic policy deployment. The ability to train and optimize policies

at scale makes it a valuable tool for advancing deformable object manipulation

in industrial settings.

4.6 Experiments and Data Collection

4.6.1 Experimental Design

Our experimental setup consists of a 7-DOF KUKA LBR iiwa robot, cho-

sen for its impedance control capabilities, which facilitate the handling of

deformable packages during trials. The robot is equipped with a four-suction

cup tool connected to a 9 CFM vacuum pump with a 1.5-micron ultimate

pressure via a manifold (see Fig. 4.7). Suction control is handled by a relay

operated through an Arduino microcontroller. To systematically study the

effects of robot motion on both the package and its internal object, we de-

signed a trajectory that captures a range of dynamic movements relevant to

real-world logistical settings. The trajectory simulates a pick-and-place opera-

tion, where a package is lifted from a conveyor belt and placed into a bin. The

final placement orientation varies from horizontal (0o) to near-vertical, with
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Figure 4.7: The experimental setup with a 7 DOF kuka LBR iiwa Robot.
A suction tool is attached to the robot that is connected to a 9 CFM
vacuum pump. The suction cups selected in this task are rated to handle
such objects specifically

73



three distinct angles: 30o (low), 45o (medium), and 60o (high). The trajec-

tory consists of three primary motions: a linear motion, followed by a circular

motion, and an orientation change at the final placement stage. To further an-

alyze motion effects, we vary joint velocity and acceleration, categorizing each

into three levels: low, medium, and high. Each of these trajectory variations

reflects the changes in Ureal. The test package measures 10×12 inches and

contains a 3D-printed internal disc of 160 mm diameter. The internal mass

is also varied across three levels: 0.5 lbs (low), 0.75 lbs (medium), and 1 lbs

(high). We collect a total of 27 distinct timestamped trajectory data points

corresponding to 1 package, 3 placement orientations, 3 mass variations, and

3 velocity conditions. Each trajectory lasts an average of 6 seconds, and we

neglected the failure scenarios since the focus was mainly on the dynamics.

Our data acquisition framework operates at 250 Hz, providing high-resolution

motion data that captures detailed package deformation over time. Despite

the limited number of 24 trajectories after filtering the failure scenarios, the

high temporal resolution of the data ensures sufficient detail for learning the

parameters effectively.

A key component of our data collection framework is a 6-camera OptiTrack

motion capture system, which is primarily used to track the deformation of

the package. OptiTrack’s Motive 2 software streams data from these cameras,

allowing us to track the positions of individual reflective markers or defined

rigid bodies and compute their corresponding SE(3) poses with a submillimeter

accuracy in tracking. As discussed in Section 4.4.2, our simulation represents

the package P as a particle-based system. To emulate this in the real world,

we affix N 2D reflective markers to the package, effectively creating a particle-

based representation. The (x, y, z) positions of these markers are tracked in

Motive 2, providing high-fidelity deformation data. Thus, the state of the

package at a time instance t is represented by the position of these markers
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XP = [xi, yi, zi]
N
i=1. To ensure accurate tracking of both the package and its

internal object, we make a design choice to use transparent packages. This

allows us to track the internal object without additional engineering efforts

for time synchronization. We acknowledge that real-world logistics settings

typically involve non-transparent packages. However, our primary objective

in this work is to establish a proof of concept demonstrating that our simu-

lation framework can handle such systems. For non-transparent packages, an

alternative approach involves using an external force-torque sensor to estimate

the center of mass (CoM) of the internal object. This would require additional

engineering, particularly for time synchronization and ensuring reliable CoM

estimation. In this study, we opt for transparent packages to simplify data

collection while maintaining the visibility of the internal object. For track-

ing the internal object, we use spherical reflective markers and define it as a

rigid body in Motive 2 (see Fig. 4.8). This setup allows us to capture both

position and orientation relative to the motion capture system’s base frame,

ensuring accurate and consistent tracking. For simplicity, we only consider the

Cartesian position of the object, and thus XO = [xO, yO, zO].

4.6.2 Processing of Motion Capture Data

The timestamped data collected from the motion capture system is inherently

noisy, primarily due to marker occlusions and the presence of spurious reflec-

tions from other reflective surfaces in the camera’s field of view. These spu-

rious reflections can result in erroneous marker detections, which we mitigate

through precise calibration. Specifically, during data collection, we execute

predefined trajectories and manually mask out any spurious markers that ap-

pear. This ensures that reflective surfaces incorrectly tagged as markers are

eliminated from the dataset. To further improve robustness, we enforce a mini-

mum difference of 10 mm between the inter-marker distance of the 2D markers
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Figure 4.8: The package and the corresponding inside object with the
motion capture markers. We also illustrate a sample trajectory that is
collected from the motion capture. We can observe that at certain time
instances, the package markers can disappear, thus entailing the adoption
of advanced data-processing methods.
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on the package and the spherical markers on the internal object. This pre-

vents marker misidentification, where the system might erroneously associate

one marker’s identity with another.

A key challenge in post-processing arises due to marker occlusion, where mark-

ers temporarily disappear from the tracking system. Since OptiTrack’s Motive

2 software does not provide marker identification and tracking across trajectory

for deformable bodies,1 we introduce a comprehensive filtering methodology

to estimate missing marker positions:

1. Noise Reduction: We first apply a low-pass Butterworth filter to the

timestamped marker trajectories to eliminate high-frequency noiseXf (t) =

1√
1+

(
fc
f

)2n
X(t). where Xf (t) is the filtered signal, X(t) is the raw marker

position, fc is the cutoff frequency, and n is the filter order. The band

gain is set to 1.

2. Hungarian Matching-Based Reassignment: If a marker disappears, we

check whether it has been reassigned a new ID by using the Hungarian

algorithm for optimal matching. Specifically, we solve for the best match

between the missing marker pi and the detected markers at time t,M(t),

based on their available neighbor information. The assignment cost is

minimized by:p̂i = argminpj∈M(t) ∥pj−p̂
(t)
i ∥, where p̂(t)i represents the set

of neighbor positions associated with the missing marker at the current

time step. If the cost is below a predefined threshold ϵ, the marker

is reassigned based on the optimal matching result. If no neighbors are

available, we discard the position information by assigning it a zero-mask

1This functionality is available in Motive 3, but for the scale of deformations in our setup, it remains
intractable.
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3. Velocity-Based Interpolation: If reassignment fails, we estimate the miss-

ing position using first-order derivative-based interpolation under the as-

sumption of local smoothness: pi(t) = pi(t − 1) + vi(t − 1) · ∆t, where,

vi(t− 1) = pi(t−1)−pi(t−2)
∆t is the estimated velocity of the marker.

4. 1D Interpolation for Long Occlusions: If data is missing for a longer win-

dow, we perform 1D linear interpolation using adjacent marker positions,

defined by pi(t) = pi(t1) +
t−t1
t2−t1 (pi(t2)− pi(t1)). where t1 and t2 are the

nearest available timestamps.

If none of the above methods successfully reconstruct the missing marker po-

sitions, we discard the affected timestamps from our dataset. Ultimately,

our filtering strategy enables us to retain 98% of the timestamped data from

the collected dataset for downstream parameter learning while ensuring high-

fidelity deformation tracking.

4.7 Results

In our experiments, we aimed to evaluate key aspects of our parameter learning

framework to assess its effectiveness. Specifically, we sought to answer the

following questions:

1. How accurately does our simulation framework predict real-world package

deformation and internal object dynamics?

2. To what extent does our method generalize to variations in control pa-

rameters and object mass?

3. How well does our proposed simulation model perform on unseen scenar-

ios in a held-out test dataset?

With these evaluations, we aim to provide a comprehensive assessment of

our simulation framework’s fidelity, robustness, and generalization capabilities,
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highlighting its potential for real-world deployment in robotic manipulation

tasks.

4.7.1 Parameter Estimation Results

Figure 4.9: Qualitative comparison of simulation vs. real-world predictions.
Blue markers represent simulated positions at a given time step, while
green markers indicate corresponding real-world positions from our test
dataset. The coordinate axes near the markers denote simulated and real
object positions, with the topmost axis representing the tool frame.

The dataset of 24 trajectories was preprocessed using our data-processing

pipeline, as described in Section 4.6.2. We employed a subset sampling strat-

egy to divide the data into training and testing sets to ensure a fair and

representative evaluation. Specifically, for the test set, we aimed to assess the

generalization of our method on unseen cases. To achieve this, we selected tra-

jectories with medium velocity, medium acceleration, and medium orientation

for a given package and mass combination. These conditions fall within the

overall distribution of the training data but are not explicitly included, allow-

ing us to fairly evaluate generalization. Based on this strategy, we allocated

four trajectories for testing. This resulted in a final split of 20 trajectories for

training and 4 for testing. All data was normalized using a min-max normal-

ization approach before training. We implemented the Bayesian optimization

framework with Bayes-Opt library [66]. We trained our model for 100 epochs
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and reported the best-performing parameter values on the training data in

Table 4.1.

Dataset
Object Package

MSE ↓ (m) CD ↓ (m)
mean max std mean max std

Train 0.0006 0.003 0.0006 0.032 0.036 0.003
Test 0.0008 0.001 0.0003 0.033 0.038 0.003

Table 4.1: The performance of the parameter estimation framework. The
error values reported here are the chamfer distance of package state and
mean-square error in object state prediction in meters.

Table 4.1 highlights the effectiveness of our parameter estimation framework

in accurately predicting both the package and internal object positions. The

error values reported confirm that our simulation model effectively captures

the intricate interactions between the deformable package, the internal object,

and the external constraints imposed by the robotic manipulator. The chamfer

distance estimation for the package loss, which is 0.033 m, demonstrates that

our model successfully captures the package deformation [67], especially for

such a complex dynamic deformable object. Additionally, the mean error of

0.0006 m for the internal object shows that the interface contact and object

parameters were appropriately learned. These results validate the learned

parameters’ accuracy and fidelity, suggesting our approach generalizes well to

various control inputs and package configurations (Refer Fig. 4.9).

4.7.2 Optimization Performance Analysis

A key premise of our framework is that accurately modeling the deformable

package system requires selecting optimal simulation parameters. If the loss

landscape were relatively flat, randomly chosen parameters would yield similar

results, reducing the need for optimization. However, in practice, random ini-

tialization often leads to poor predictions, as the loss landscape contains local
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Figure 4.10: The marker prediction discrepancies are primarily at the
edges, while accuracy remains high near the suction cups, a critical region
for failure detection. This demonstrates that our parameter estimation is
well-suited for computing safe and efficient trajectories, as most errors do
not impact performance.
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minima that significantly impact performance. Our Bayesian optimizer effec-

tively identifies an optimal set of parameters that enables accurate prediction

of the package and internal object states, which are critical for learning safe

and efficient manipulation policies.

To validate this, we perturb each parameter by a percentage of its optimized

value and analyze its effect on prediction accuracy. Our sensitivity analysis

shows that perturbations within 20% of the optimized value maintain sta-

ble performance with minimal impact on accuracy. However, beyond this

threshold, the simulation becomes unstable, requiring reduced time steps for

integration, which significantly slows down the overall simulation speed.

To validate that our prediction accuracy is sufficient for computing safe and

efficient manipulation policies and trajectories, we analyze the simulation’s

performance. As shown in Fig. 4.10, the primary discrepancies in marker

position predictions occur at the package edges, while markers near the suction

cup engagement points, closer to the package center, maintain high accuracy

(< 0.01m). This demonstrates that despite a chamfer distance of 0.03m, our

simulation model remains effective for generating reliable and safe trajectories.

4.7.3 Simulation Performance Metrics

A critical aspect of our simulation framework is evaluating its computational

efficiency in handling complex multi-object interactions. To ensure high fi-

delity while maintaining acceptable prediction accuracy, we systematically

vary the number of particles representing the package and analyze its impact

on both prediction performance and simulation frame rate. As shown in Table

4.2, increasing the particle count results in a comparable simulation frame rate

but introduces a trade-off between computational efficiency and accuracy. Our

findings suggest that practitioners should fine-tune the particle count based
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on their specific accuracy and performance requirements. Another key consid-

eration is hardware memory limitations. All our evaluations are conducted on

an NVIDIA GeForce RTX 3060 12 GB GPU, where instantiating more than

1612 particles leads to memory overload. Furthermore, Fig. 4.11 demonstrates

that reducing the particle count can lead to inaccurate package deformation,

ultimately degrading prediction performance, which aligns with our ablation

studies.

Figure 4.11: Difference in package shape in simulation with reducing the
number of particles. We can see that fewer particles can lead to poor
performance in capturing the package deformation.

Num Particles Frame Rate (FPS) ↑ Package CD (m) ↓ Object MSE (m) ↓
1612 9 0.032 0.0006
1050 10 0.033 0.0007
608 10 0.035 0.0008
286 10 0.037 0.001

Table 4.2: Effect of particle count on simulation parameters and frame
rate. The prediction performance depends on the number of particles. Our
simulation runs in real-time, meaning it takes t seconds to simulate a
trajectory of duration t seconds. We can see that increasing the number of
particles improves the loss without affecting the FPS. However, FPS
remains the same. Increasing the number of particles can cause issues with
available GPU memory.
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4.8 Discussions

While our primary focus in this work is on developing a deformable simulation

model of the package-object system, its broader impact on package handling

efficiency is crucial to consider. The proposed model significantly enhances the

balance between safety and efficiency across key manipulation stages: pick-

up, transport, and placement. Each of these steps demands precise trajectory

computation to minimize failures that could result in package damage. In our

prior [59], we explored trajectory optimization for fully filled packages, but

it did not capture the complexities introduced by partially filled deformable

packages with a moving object. In this work, our proposed multi-object model

addresses this gap by providing a more adaptable and accurate simulation

framework, enabling robots to handle a wider range of package conditions with

improved reliability and efficiency in computation that translates to process

efficiency.

Our GPU-based simulation framework implementation enables more efficient

training times, with an observed 30% reduction compared to non-GPU-based

models. By accelerating trajectory optimization and improving convergence

speed, our approach reduces the number of iterations required to find an opti-

mal solution. This computational improvement can potentially decrease over-

all process time by 15% [59]. Furthermore, the ability to explicitly model fail-

ure cases [5] enhances robustness, with a potential failure reduction of 20%.

Internal object movement within the package plays a key role in suction-based

grasp failures, and our approach allows for precise simulation and tracking of

these dynamics. By optimizing trajectories to minimize internal object mo-

tion, we reduce instability and the risk of package damage. Unlike conventional

rigid-body simulators, our approach dynamically adapts to variations in pack-

age shape, weight, and contents, allowing robots to respond to disturbances
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up to 2-5 times faster, ensuring more reliable real-world deployment without

extensive manual tuning.

Although our simulation framework is designed to be differentiable, maintain-

ing smooth and stable gradients within the NVIDIA Warp framework proves

challenging. This difficulty arises from the inherent complexities of simulating

deformable objects, where small numerical or algorithmic inconsistencies can

introduce noisy gradients, particularly when accounting for non-linearities,

contact dynamics, and material deformations. The gradients may become

unstable or imprecise in high-dimensional, dynamic environments, where the

relationships between simulation parameters and physical behaviors are in-

tricate. Such noisy gradients can degrade the performance of gradient-based

optimization methods, leading to suboptimal solutions or slower convergence

due to erratic updates.

In contrast, Bayesian optimization is particularly well-suited for these types

of scenarios. Unlike gradient-based methods that depend on precise gradient

information, Bayesian optimization treats the objective function as a black

box and constructs a probabilistic model. This allows it to explore the param-

eter space effectively without relying on gradients, making it more resilient to

noisy or unreliable signals. By incorporating prior knowledge and carefully

balancing exploration with exploitation, Bayesian optimization can navigate

the parameter space efficiently, even in the presence of noise or limited data.

Furthermore, since Bayesian optimization updates its model iteratively based

on fewer but more informative evaluations, it mitigates the impact of noisy

gradients, leading to more stable optimization. Given these advantages, we

have opted to rely on Bayesian optimization rather than exploiting the differ-

entiability of our simulation framework in this work.
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4.9 Summary

In this chapter, we presented a high-fidelity simulation framework tailored

for modeling shell-like deformable objects, specifically, deformable packages

containing internal objects that exhibit dynamic motion. Unlike traditional

approaches focused on 1D or 2D deformable structures, this work tackled

the challenges unique to packages encountered in warehouse and logistics au-

tomation, where internal mass movement significantly complicates external

deformation behavior.

A physics-based, GPU-accelerated simulation environment that captures both

the elastic behavior of the package shell and the coupled dynamics of the

internal object is introduced. This framework enables accurate modeling of

complex phenomena critical for robotic manipulation, including shape changes

under suction contact and dynamic shifts in the center of mass during trans-

port. To ensure that simulated behaviors faithfully match real-world physics, a

Bayesian optimization approach for simulation parameter learning, grounded

in motion-capture deformation data, is proposed. Furthermore, a structured

loss formulation is developed that provides more informative gradients during

parameter optimization, improving the robustness and accuracy of the learned

simulation models.

In addition to modeling contributions, we created a comprehensive experimen-

tal testbed for real-world data collection and parameter identification, and de-

veloped a parallelized Gym environment to enable scalable policy training for

robotic manipulation of deformable packages.

Extensive evaluations validated that the proposed simulation framework gen-

eralizes well to real-world scenarios, accurately capturing both external de-

formations and internal dynamic effects. By enabling policy learning in a

physics-informed environment, this work lays the foundation for safer, more
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efficient, and more adaptive robotic handling of deformable packages in semi-

structured industrial environments.

Overall, this chapter demonstrates that physics-informed, structure-aware sim-

ulation modeling provides a powerful tool for tackling one of the most chal-

lenging frontiers in robotic manipulation: the safe, reliable handling of de-

formable packages under uncertainty. This work underscores a central disser-

tation theme—that combining physical priors with learning-based approaches

is key to enabling the next generation of intelligent, adaptable robotic systems

for real-world industrial applications.
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Chapter 5

Graph-Based Neural Dynamics of Shell-Like

Deformable Objects

5.1 Introduction

Figure 5.1: Accurate initialization in the FEM-based simulation can be
challenging. Since the simulator solves for the complex interactions, the
initial state of the package and the object can have uncertainty associated
with them, which can propagate as an error for a given trajectory.

Chapter 4 introduced a finite element method (FEM)-based approach for sim-

ulating shell-like deformable objects using a particle-based thin-shell represen-

tation. While the FEM-based method offers advantages such as high-fidelity

modeling, minimal data requirements, and the capability to manage complex

interactions, it heavily depends on semi-implicit Euler integration for solving

the forward dynamics. The semi-implicit Euler integration method produces
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time-discretized approximate solutions for the forward dynamics of the sys-

tem’s state (Xt+1, Ẋt+1). The stability of this integration method is closely

tied to the chosen integrator time-step (∆t), necessitating a delicate balance

between stability and computational efficiency. Small time-steps enhance sta-

bility but at the expense of increased simulation times. Moreover, determining

an optimal time-step is complicated further by its sensitivity to simulation

parameters and initial conditions, which introduces additional complexity to

FEM-based modeling.

Another significant challenge with FEM-based simulations lies in accurately

initializing the system state, particularly for composite configurations involv-

ing a thin-shell deformable package and an internal rigid object (refer to Chap-

ter 4). The system’s settled state is highly sensitive to simulation parameters

and the initial positioning of mesh entities, leading to initialization uncertain-

ties that propagate through subsequent simulation steps, causing discrepancies

between simulated and real-world behaviors (Refer to Fig. 5.1). While meth-

ods exist to alleviate this issue, such as pre-learning static deformation before

applying external dynamics, they introduce additional complexity to the op-

timization process and data collection.

Furthermore, despite successfully demonstrating FEM’s capability in modeling

various materials, finding feasible solutions under complex constraint scenar-

ios remains challenging. The limited number of FEM parameters (only 11)

constrains the accurate representation of intricate interactions among rigid

and deformable components within the system. FEM effectively captures the

overall shape of the package but tends to fall short in modeling the subtle

deformation details and surface curvatures induced by external control inputs

[59].
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Regardless of all these challenges, retaining a structured particle-based mesh

representation is advantageous due to its capacity to effectively encode spa-

tial distributions and relationships. However, what one needs is to overcome

the shortcomings of the semi-implicit Euler integration, complex interactions

(rigid-deformable), and uncertainty in initialization. To achieve this, we turn

our attention to Graph-based Neural Dynamics (GND) [68] that exhibit the

desirable properties for simulating complex deformable objects. GND models

represent objects as graph nodes connected by edges encoding spatial relation-

ships, and leverage multi-layer perceptrons (MLPs) to predict forward system

dynamics. GNDs have recently gained prominence due to their robust capa-

bility to simulate large-scale and complex deformations, alongside significantly

easier initialization, as the initial node positions can be directly captured from

observations.

This chapter extends the graph-based neural dynamics framework to effec-

tively manage intricate rigid-deformable interactions by explicitly grounding

them in material parameters. By embedding these physical parameters into

our model, we incorporate critical physics-based priors that enhance predictive

accuracy. Additionally, we exploit the natural shape-retention property of de-

formable packages (see Section 5.5.5) by proposing a specialized loss function

designed to capture realistic deformation characteristics. To summarize, the

key contributions of this chapter are:

1. Development of a graph-based neural dynamics model capable of accu-

rately simulating thin-shell deformable objects interacting with internal

rigid entities and deformable suction-cup attachments, while simultane-

ously predicting internal object dynamics.
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2. Introduction of a training methodology that explicitly embeds material

parameters and leverages a shape-retention loss, ensuring alignment of

simulated dynamics with observed real-world deformation behaviors.

5.2 Related Works

Graph Neural Networks (GNNs) have rapidly emerged as a powerful paradigm

for learning the dynamics of physical systems that can be naturally cast as

graphs, where nodes represent particles or rigid bodies and edges encode their

interactions [69]. Early demonstrations showed that GNN-based models could

accurately predict the evolution of rigid-body ensembles and granular media by

learning force-like message-passing rules directly from data [70]. Subsequent

work extended these ideas to robotic manipulation tasks, using graph-based

dynamics models to plan and control interactions with deformable rope, cloth,

and soft-body objects [71–74].

Despite these successes, most existing GNN-based simulators treat material

properties as either fixed global constants or ignore them altogether, limiting

their ability to generalize across objects with varying stiffness, mass, or damp-

ing. The recent work by the authors of [68] represents one of the first efforts to

incorporate material parameters into a GNN dynamics model, albeit focused

on quasi-static, single-object deformations. To our knowledge, no prior study

has addressed multi-component systems that combine both rigid-deformable

and deformable-deformable interactions, nor has any applied graph-based dy-

namics to thin-shell, package-like objects in a robotic manipulation context.

This chapter fills these gaps by proposing a physics-informed GNN framework

that (i) embeds per-node and per-edge material parameters to capture hetero-

geneous deformability; (ii) models a coupled suction-cup, thin-shell package,

and internal object system, explicitly representing rigid–deformable contact
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and suction constraints; and (iii) adds a shape-retention regularizer grounded

in physical observations. By doing so, our work extends the applicability of

graph-based neural dynamics from rigid or granular media to complex shell-

like deformable objects with real-world robot control applications.

5.3 Graph-based Representation

Figure 5.2: Graph-based representation of the suction-package-object
system. Nodes represent the deformable suction cup, thin-shell package,
and rigid internal object. Edges encode both intra-entity relationships
(within the suction cup or package) and inter-entity interactions (between
suction cup–package and package–internal object), effectively capturing the
complex spatial and dynamic relationships within the system.

The problem formulation in this chapter closely mirrors the one defined pre-

viously in Chapter 4, Section 4.3. We again consider a package P and an

internal object O, characterized by parameters collectively denoted as Ψ, and

their interactions represented by µ. While retaining the terminologies and ob-

jectives from Section 4.3, this chapter introduces a nuanced shift by employing

a graph-based representation of the system, as illustrated in Fig. 5.2.

The entire package-object-suction cup system is represented as a structured

graph, composed of nodes that correspond to distinct physical entities and

edges that encode spatial and relational interactions between these entities.
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Specifically, as illustrated in Fig. 5.2, the graph comprises three distinct types

of nodes: those belonging to the thin-shell deformable package, the deformable

suction cup, and the rigid internal object. Each node is explicitly assigned to

its respective entity type to maintain clarity in the representation.

Edges in the graph are introduced to capture the spatial structure, dynamics,

and inherent interactions within and between entities. The graph contains

two main classes of edges: inter-entity edges and intra-entity edges. Inter-

entity edges model the interactions between different types of entities, such as

connections from the suction cup nodes to the package nodes and from the

package nodes to the internal object nodes. These edges encode interactions

like gripping constraints and contact dynamics. On the other hand, intra-

entity edges represent the internal structure and intrinsic spatial relationships

within each entity, for example, edges connecting neighboring nodes within

the deformable package itself.

These edges are constructed based on criteria such as spatial proximity, known

physical constraints, and the established relational structure of the entities

within the system. Collectively, the nodes and edges form a comprehensive

representation that facilitates capturing the complex dynamics inherent in the

interactions among rigid and deformable components. The attributes utilized

to construct rich and informative embeddings for both nodes and edges, which

ultimately enable accurate prediction of the system’s forward dynamics, are

described in detail in the following sections.

5.4 Message Passing Overview

As previously discussed, a significant advantage of adopting a graph-based

representation is its inherent capability to capture the spatial relationships and

structural dynamics among entities, akin to the FEM-based method outlined in
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Figure 5.3: Overview of the graph message-passing framework used to
capture complex interactions among the suction cup, package, and internal
object. Node-level, edge-level, and global-level attributes are embedded and
propagated through successive message-passing layers to model both local
and system-wide dynamics. The output of these message passing layers is
latent representations of the node, edge, and global embeddings, which can
then be further passed to a decoder for downstream dynamics predictions.

Chapter 4. A widely used approach for modeling such relationships in graphs

is the Graph Neural Network (GNN) framework [75], which leverages message

passing to propagate embeddings across graph nodes, encoding relationships

through edges to derive meaningful inductive biases.

The suction-package-object system examined in this study inherently provides

three categories of attributes critical for an accurate and informative graph-

based representation: (1) Node Attributes, (2) Edge Attributes, and (3)

Global Attributes. Each attribute type uniquely captures essential charac-

teristics and interactions within this complex, rigid-deformable system. Specif-

ically, node-level attributes include positional data and entity identification

(e.g., package, suction cup, internal object). Edge-level attributes encapsulate

the relational interactions between nodes, reflecting proximity, constraints, and

physical interactions. Lastly, global attributes encompass external control in-

puts, such as forces applied to the system, and intrinsic system properties like

mass distribution and overall dimensions. The details on how we encode these
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to generate the corresponding embeddings are given in Sections 5.5.1, 5.5.2,

and 5.5.3.

To effectively model these complex interactions, we build upon the Graph Net-

work Block introduced by the authors in [76]. Their framework naturally aligns

with our requirements, and we extend this message-passing mechanism to ac-

curately represent and capture the dynamics of our suction-package-object

system, integrating the structured graph attributes into our representation to

enhance predictive performance and fidelity.

The message passing framework utilized in our approach involves two key

functions: the encoder function (Φ), implemented as a Multi-Layer Percep-

tron (MLP), and the scatter function (ρ), which aggregates and propagates

embeddings throughout the graph. Specifically, we employ the sum oper-

ator (
∑

) as our scatter function to collate information effectively. Within

a message-passing layer, there are three distinct components: (1) the Edge

Block, (2) the Node Block, and (3) the Global Block. Each block consists of

its own dedicated Φ and ρ functions, working cohesively to capture and prop-

agate intricate relational dynamics and interactions, as illustrated in Figure

5.3.

Overall, the message passing steps can be encapsulated by the following equa-

tions:

e′k = ϕe(ek, vrk , vsk , u) ē′i = ρe7→c(E′
i) (5.1)

v′i = ϕv(ē′i, vi, u) ē′ = ρe7→u(E′) (5.2)

u′ = ϕu(ē′, v̄′, u) v̄′ = ρv 7→u(V ′) (5.3)

Where, V = {vi}i=1:Nv is the set of nodes with cardinality Nv, and each

vi is the node’s attribute. Similarly, the set of edges with cardinality N e is
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represented by E = {(ek, rk, sk)}k=1:Ne , where ek is the edge attribute for

the edge between a receiver node rk and sender node sk. Furthermore, E′
i =

{(e′k, rk, sk)}rk=i,k=1:Ne , V ′ = {v′i}i=1:Nv , andE′ = ∪iE′
i = {(e′k, rk, sk)}k=1:Ne .

These update operations are applied over N message-passing layers, establish-

ing an N -hop receptive field depth. As a result, each node’s final embedding

aggregates information from all neighbors up to N steps away, allowing the

GNN to capture both local interactions and broader system-level context.

5.5 Graph-based Neural Dynamics Model

Figure 5.4: Graph-based neural dynamics overview: given node, edge, and
global attributes, the model uses successive message-passing layers to
generate latent embeddings and predict the system’s forward dynamics for
the coupled suction-package-object network. The latent embeddings from
the message passing layers are then passed to a multi-head decoder that
predicts the forward dynamics of the internal object and the package,
respectively.

The message passing framework provides a structured mechanism for cap-

turing and propagating spatial relationships within the graph representation.

However, the central objective of this work is to accurately predict the dy-

namics of the suction-package-object system. To effectively learn meaningful

inductive biases through message passing, it is crucial to encode attributes

that comprehensively represent both the system’s state and control inputs.
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Analogous to FEM-based methods grounded explicitly in parameters such as

stiffness, damping, and adhesion, which serve as surrogates for real-world ma-

terial properties, it becomes equally important for graph-based neural models

to be similarly grounded in explicit physics-based parameters.

Prior work, such as presented by Zhang et al. [68], introduced methods for

encoding material parameters within a Graph Neural Dynamics (GND) frame-

work. However, their approach lacked explicit modeling of multi-object inter-

actions, particularly those involving both rigid-deformable and deformable-

deformable entities. Additionally, their framework used global, object-level

material embeddings rather than entity-specific conditioning, limiting its rep-

resentational capacity. Furthermore, their predictions were restricted to quasi-

static scenarios, failing to capture the continuous and dynamic interactions ob-

served in real-world settings such as the suction-package-object system studied

here.

Addressing these limitations, we propose a novel methodology and model ar-

chitecture that extends beyond simple deformation predictions and global ma-

terial embeddings. Our approach introduces node-level and edge-level mate-

rial properties, explicitly encoding interactions such as rigid-deformable and

deformable-deformable within the graph structure. By grounding the node

and edge attributes directly on physics-based material parameters, our model

integrates strong physics-informed priors, enhancing predictive accuracy and

generalization. Additionally, we introduce a systematic method for construct-

ing a comprehensive material embedding matrix capable of accommodating

diverse package and object materials typically encountered in practical sce-

narios.
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To robustly model the coupled dynamics of the package and internal object,

our proposed architecture features two decoder heads with shared parame-

ters (detailed in Section 5.5.4). This design choice significantly improves the

model’s predictive capability, enabling it to capture the intricate interdepen-

dencies and continuous dynamics characteristic of the suction-package-object

system, as demonstrated in our experimental results.

5.5.1 Node Encoder

Figure 5.5: Node-level encoder architecture: for each node, the encoder
network ingests its spatial coordinates (expressed in the end–effector frame
to preserve SE(3) equivariance) along with a learned material embedding
derived from its deformability flag (0 = rigid, 1 = deformable) and entity
type (0 = suction, 1 = package, 2 = object). The MLP applies these inputs
to produce a compact node embedding that seeds the subsequent
message-passing layers.

To effectively encode node attributes and ground them in relevant material

parameters, we propose the node embedding model illustrated in Fig. 5.5. A

critical feature of this model is its input representation: each node’s x, y, z po-

sition is expressed in the robot’s end-effector frame of reference, ensuring that

the model maintains SE(3) equivariance. Additionally, to embed meaningful

physical characteristics, we explicitly encode both a deformability index (rigid

or deformable) and an entity-type index (suction cup, package, or internal
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object). These indices are processed through a dedicated material embedding

model, resulting in a compact, fixed-size material embedding.

Subsequently, the positional data and the material embeddings are jointly pro-

cessed through an MLP. This MLP generates a comprehensive node embed-

ding vector, effectively capturing both spatial configurations and physics-based

material properties. Consequently, the resulting node embeddings provide a

robust and physically grounded representation, essential for accurate modeling

of complex interactions within the suction-package-object system.

5.5.2 Edge Encoder

Figure 5.6: Edge-level encoder architecture: each edge’s encoder ingests the
source and target node IDs alongside their Euclidean distance that
preserves SE(3) equivariance, and an edge-type identifier that specifies
whether the connection is rigid–deformable, deformable–deformable, or
intra-entity. An MLP then combines these inputs into a rich edge
embedding.

The edge encoder model shares a similar architecture to the node encoder

model but is specifically designed to represent relationships between node

pairs. Since translation equivariance is a fundamental property desirable in

any dynamics model, we encode this equivariance by explicitly utilizing the

Euclidean distance between the two nodes forming an edge.
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Edges between nodes are established based on specific criteria reflective of the

system’s inherent physical constraints and interactions. Specifically, edges are

created either between nodes belonging to the same entity (i.e., internal ob-

ject, package, or suction cup) or between nodes from different entities based

on their proximity with each other, provided they represent physically mean-

ingful interactions—namely, edges between package and suction cup nodes or

between package and internal object nodes. Edges are not established di-

rectly between the suction cup and internal object nodes since these entities

do not directly interact within the system under consideration. Furthermore,

as outlined in Section 5.4, each edge explicitly incorporates the IDs of its

corresponding source and target nodes, ensuring clear relational identification

within the graph.

To further ground the edge attributes on physics-inspired material parameters,

we introduce an embedding matrix specifically for edge types, as illustrated

in Fig. 5.6. This embedding matrix encodes information about the inter-

action type, such as deformable-rigid or deformable-deformable interactions.

The generated material embedding is then concatenated with the existing edge

attributes, subsequently passing through a dedicated edge embedding MLP.

This process ensures the resulting edge embeddings accurately capture both

the spatial relationships and the physical constraints inherent to the interac-

tions within the suction-package-object system.

5.5.3 Global Encoder

The global encoder plays a crucial role in capturing overarching system-level

context essential for precise downstream dynamics prediction. It aggregates

key attributes of the package-object system, including intrinsic properties like

mass distribution and dimensional characteristics. Additionally, the encoder
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Figure 5.7: Global-level encoder architecture: embeds system-wide
attributes—including package and object mass and dimensions—alongside
external control inputs (end-effector position, orientation, velocity, and
acceleration) into a unified global context vector for downstream dynamics
prediction.

incorporates external control inputs—specifically, the robot’s end-effector state

described by its position, orientation, velocity, and acceleration. By integrat-

ing both intrinsic object properties and dynamic control inputs into a unified

embedding, the global encoder provides the model with comprehensive con-

textual awareness, enabling robust and accurate predictions of the coupled

rigid-deformable interactions within the system.

5.5.4 Dynamics Decoder

Predicting the coupled dynamics of our suction–package–object system re-

quires a decoder that can disentangle rigid-body motion from deformable be-

havior while still modeling their mutual influence. In practice, we observed

two distinct patterns: the internal object largely follows an independent rigid-

body trajectory, especially under high orientation changes and accelerations,

while the package retains its general shape but deforms in response to both

external forces and the object’s motion.
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Figure 5.8: Multi-head decoder architecture: two specialized decoder heads
jointly predict the coupled dynamics of the internal object and the
deformable package. The object head consumes only the object’s node
embeddings plus the global context to forecast rigid-body motion, while the
package head processes all package node embeddings alongside the same
global vector to predict continuous deformations. Together, they capture
the interdependent behavior of both subsystems.

To capture these nuances, we employ a multi-head decoder (Fig. 5.8) with

two specialized branches:

1. Object Head:

(a) Inputs: Only the internal object’s node embeddings plus the shared

global context embedding.

(b) Rationale: The object behaves like a rigid body; its future state

depends primarily on its own local interactions and the overall system

context, not on the full deformable mesh. Experimentally, isolating

these embeddings improved object-motion accuracy by an order of

magnitude over a combined decoder.

2. Package Head

(a) Inputs: All package node embeddings concatenated with the same

global context embedding.

(b) Rationale: The package’s deformation arises from both external con-

trol inputs and the internal object’s movement. Including the entire

102



set of package nodes allows the decoder to model how local deforma-

tions propagate across the shell.

Both heads predict delta-state updates (changes in node positions) rather than

absolute positions, further simplifying learning and ensuring stable integra-

tion with downstream control modules. By structurally separating the rigid

and deformable components—and tailoring each head’s receptive field accord-

ingly—we enforce an inductive bias that mirrors the physical interdependence

observed in real experiments. This design not only validates our hypothe-

sis about coupled dynamics but also delivers substantial gains in predictive

fidelity for both rigid-body and deformable motions.

5.5.5 Model-Training

Figure 5.9: Shape-retention under low dynamic loads: when the
end-effector’s orientation and acceleration remain minimal (up to 2 s), the
package maintains its initial shell shape. Once orientation changes intensify
and acceleration increases, combined with internal object motion and
suction-cup compliance, the package visibly deforms.

We train our graph-based neural dynamics model using a composite loss that

is coherent with the objectives from Chapter 4 while introducing a new term

to enforce realistic shape retention. Specifically, our total loss is

L = λ1Lchamfer + λ2LMSE + λ3Lshape-retention (5.4)
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1. Package Chamfer Loss

Lchamfer = Chamfer
(
Ppred, Pgt

)
measures the bidirectional Chamfer distance between the predicted and ground-

truth package surface point sets (Eq. 4.2). It captures both global and local

geometric discrepancies without requiring explicit point correspondences, mak-

ing it ideal for thin-shell geometry.

2. Object Mean-Squared-Error Loss

LMSE =
∥∥cpred − cgt

∥∥2
penalizes the squared error in the center-of-mass positions of the internal ob-

ject (Eq. 4.3). Given the object’s rigid-body behavior, this simple MSE term

suffices to drive accurate rigid-body predictions.

3. Shape-Retention Loss To enforce the experimentally observed behav-

ior, namely, that under small end-effector rotations (below 20◦) and low accel-

erations, the package shape remains essentially unchanged (see Fig. 5.9)—we

introduce a physics-inspired regularizer:

Lshape-retention = λδ Lδ
(
1− σ(α∆R+ β∆a)

)
, (5.5)

where the core penalty term is

Lδ =
1

Nv

Nv∑
i=1

max
(
∥xit − xit−1∥ − δ, 0

)2
,

104



This term clips small displacements below a threshold δ (set according to the

commanded robot trajectory) and penalizes only larger per-node movements.

Here, ∆R and ∆a are the changes in end-effector orientation and acceleration,

respectively; σ is a sigmoid function that attenuates the penalty as motion

intensity increases; and λδ, α, β are tunable hyperparameters.

By predicting delta positions instead of absolute coordinates, and constrain-

ing those deltas within physically plausible limits, we enforce smooth, locally

coherent updates that honor both the graph topology and the system’s inher-

ent dynamics. Empirically, the shape-retention regularizer enhances numerical

stability, mitigates spurious deformations under mild motions, and produces

gradients that align with real-world physical behavior. Using this composite

loss (Eq.5.4), we train the model depicted in Fig.5.4, yielding robust, accurate

predictions of the suction–package–object system’s forward dynamics.

5.6 Experiments

We evaluated our graph-based model using an extended version of the experi-

mental protocol from Section 4.6, broadening both the physical configurations

and the dynamic conditions under which the system operates. In addition to

our original package and internal object parameters, we introduced two new

sets of package and object dimensions and mass distributions (see Fig. 5.10),

challenging the model to generalize across a wider range of material properties.

To further stress-test performance, we incorporated higher end-effector veloc-

ities into our draping maneuvers, resulting in a dataset of 244 suction-driven

trajectories that span gentle to aggressive motion regimes.

As before, we collected time-stamped motion-capture data for both the pack-

age mesh and the internal object’s center of mass, processed through the same

registration and filtering pipeline described earlier. Importantly, we also made
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Figure 5.10: The three different classes of package size, object size, and
object mass.

use of failure-mode data: whenever a trajectory ended abruptly, detected via a

sudden wrench signature on the end-effector, we truncated the sequence at the

failure point and included it in training. By combining varied geometric con-

figurations, increased velocity conditions, and both successful and truncated

failure trajectories, our experiments rigorously assess the model’s ability to

capture nuanced rigid–deformable interactions and maintain predictive accu-

racy across realistic, high-variability scenarios.

5.7 Results

In our experimental evaluation, we focused on two core questions that mirror

those from Chapter 4, but under our expanded test conditions. First, we

asked: “How does the Graph Neural Dynamics (GND) model’s accuracy in

predicting package deformation and internal object motion compare to that of

our FEM-based simulator?” Second, we probed computational performance:
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“Can the GND model deliver comparable—or better—prediction fidelity while

running significantly faster than the FEM pipeline?” By directly comparing

point-set errors for the package surface, center-of-mass errors for the object,

and end-to-end run times across all 244 test trajectories (including both gentle

and aggressive motions, as well as truncated failure cases), we were able to

quantify each approach’s strengths and trade-offs.

Method Dataset Num
Trajectories

Object (MSE) ↓ Package (CD) ↓
Mean Max Mean Max

FEM Train 20 0.006 0.003 0.032 0.036
Test 4 0.0008 0.001 0.033 0.038

GND Train 236 0.00001 0.0002 0.027 0.038
Test 8 0.00001 0.0005 0.029 0.045

Table 5.1: Comparison of prediction errors for our Graph Neural Dynamics
(GND) model versus the FEM-based simulator from Chapter 4. GND
consistently yields lower mean and max errors for both package
deformation and internal object motion, demonstrating more reliable
rigid–deformable coupling. Occasional spikes in the maximum error
primarily correspond to test frames with missing motion-capture markers.

Table 5.1 summarizes the quantitative comparison between our Graph Neural

Dynamics (GND) model and the FEM-based simulator. The most striking

improvement is seen in the internal object prediction, where GND reduces

the mean center-of-mass error by over 10x. This gain can be directly traced

to our multi-head decoder design, which decouples rigid-body and deformable

predictions into specialized branches—whereas a single-head decoder yielded

performance on par with FEM. We also see a consistent reduction in the mean

package-surface error, further demonstrating GND’s ability to capture sub-

tle deformations more accurately than FEM. Overall, these results highlight

both the architecture’s effectiveness at modeling interdependent dynamics and

the model’s superiority over traditional FEM in our suction–package–object

scenario.
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Figure 5.11: Qualitative comparison of predicted versus ground-truth
trajectories for both package deformation and internal object motion under
high end-effector orientation. The Graph Neural Dynamics model closely
tracks the true deformations and rigid-body movements, demonstrating
robust performance even in challenging configurations.

Figure 5.11 shows representative predictions of both package deformation and

internal object motion under extreme end-effector orientations. Even as the

robot tilts the package beyond typical operating angles, the Graph Neural

Dynamics model faithfully reproduces subtle shell deformations and rigid-body

shifts of the internal object. Error analyses in Figure 5.12 confirm that residual

discrepancies are concentrated at the package’s distal edges—well outside the

suction-cup region where failures occur—mirroring the spatial error patterns

observed with our FEM baseline in Chapter 4. Crucially, this localization

of error ensures that trajectory planners can rely on the model’s outputs to

maintain grip integrity and avoid drop events. Finally, the GND model runs

approximately five times faster than the FEM simulator in a forward pass,

enabling real-time trajectory optimization and closing the loop in responsive,

in-situ manipulation tasks.
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Figure 5.12: Worst-case error scenario for package deformation: the largest
discrepancies between predicted and actual meshes occur at the sheet’s far
edges, while the region near the suction cup, critical for grip stability,
remains accurately modeled. This indicates that even under high-error
conditions, the model’s predictions in the failure-critical zone are reliable
enough for robust trajectory planning.

5.8 Summary

This chapter presented a Graph Neural Dynamics (GND) model designed to

simulate the coupled behavior of a suction–package–internal-object system.

By representing each component—deformable suction cup, thin-shell pack-

age, and rigid internal object—as nodes in a unified graph, and by explicitly

encoding their spatial and physical relationships through edge and global at-

tributes, a continuous, data-driven dynamics model is learned that is capable

of handling complex rigid–deformable interactions. The proposed architecture

conditions each node and edge on material-specific parameters, such as stiff-

ness, damping, and deformability indices, via dedicated embedding networks,

thereby grounding the learned representations in real-world physics. Further-

more, a shape-retention regularizer is introduced that enforces experimentally
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observed behavior (minimal shell deformation under low rotations and acceler-

ations), yielding smooth, stable predictions that respect the system’s physical

constraints.

Empirically, the GND model matched or exceeded the FEM baseline’s pre-

dictive accuracy while running an order of magnitude faster, making it well-

suited for online trajectory generation. Importantly, errors remained localized

away from the suction-cup region, where grip failures occur, demonstrating

the model’s reliability in safety-critical zones. This performance opens the

door to real-time, physics-informed trajectory optimization for such complex

suction-based manipulation tasks of deformable objects.
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Chapter 6

Learning Task Sequencing Policies for Deformable

Object Manipulation

6.1 Introduction

Task planning plays a central role in industrial processes involving deformable

object manipulation. These processes often consist of a sequence of inter-

dependent subtasks, where the order of execution significantly influences the

final product quality. In many real-world scenarios, an incorrect or suboptimal

task sequence can introduce defects that are difficult or impossible to rectify

downstream, resulting in costly rework, scrapped parts, or compromised safety

and performance. This sensitivity to task ordering becomes even more criti-

cal when dealing with deformable components, whose dynamic and compliant

behavior can amplify the consequences of early-stage mistakes in the process.

Industrial operations such as composite prepreg layup, surface finishing, and

protective coating applications all involve the sequential processing of a part,

often by human experts. In composite layup, for instance, the direction and

sequence of ply placement affect both the structural integrity and the manu-

facturability of the part. In surface finishing tasks, the order in which regions
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are processed can influence the uniformity of material removal, while in coat-

ing applications, sequence affects drying time, adhesion, and coverage. The

precision and repeatability required in these tasks make sequence planning not

just beneficial, but essential to success.

Figure 6.1: Example processes that require human-to-robot skill transfer.

In practice, skilled human operators rely on accumulated experience and pro-

cess intuition to make these sequencing decisions, balancing quality objec-

tives with practical concerns like tool accessibility and ergonomic constraints.

However, a growing shortage of skilled labor [77] is creating urgency around

automating these knowledge-intensive tasks. As industries seek to scale pro-

duction while maintaining quality, there is a need for robotic systems that can

perform complex operations traditionally handled by human experts. These

processes require both motion planning and high-level task planning to work

in concert, encompassing the execution of individual actions and the strategic

decomposition and sequencing of tasks to ensure success. Deformable object

manipulation further amplifies these requirements, as the interaction between
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sequential actions and material response is often nonlinear and difficult to

model explicitly.

To address this, the work presented in this chapter focuses on learning task

sequencing policies from human expert demonstrations, with the goal of trans-

ferring domain knowledge to robots in a structured and scalable manner, rather

than relying on heuristic rules or physics-based simulation, which can be pro-

hibitively complex for modeling defect propagation in deformable materials [1,

78, 79], the proposed approach models expert intent through Inverse Reinforce-

ment Learning (IRL). Rather than simply mimicking observed sequences, the

IRL approach infers the underlying reward functions that drive expert behav-

ior, allowing for generalization to new tools and unseen process configurations.

As shown in Fig. 6.1, the goal is to enable human-to-robot skill transfer for

processes where task sequencing is critical. Experts typically decompose a

high-level operation into subtasks, each corresponding to a local action on a

specific region of the part. These subtasks are executed in a carefully consid-

ered sequence, informed by both performance goals (e.g., quality, coverage)

and ergonomic or operational constraints (e.g., tool access, ease of motion).

By interviewing domain experts and capturing detailed demonstrations, this

chapter investigates how these preferences can be modeled and learned through

feature-driven IRL.

A key observation from our expert interviews is that multiple task sequences

may be viable for a given tool, but not all are preferred. The preference

may stem from various external factors, such as workspace layout, process

ergonomics, or tool design. To address this, the learned policy distinguishes

between performance-based preferences (which affect outcome quality) and

effort-based preferences (which reflect ease of execution), and learns them

independently. We further introduce a method for assessing feature interaction
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coverage in demonstration datasets to ensure the generalizability of the learned

policy.

The resulting framework enables robots to plan and execute high-level oper-

ations on deformable objects by sequencing subtasks in a manner consistent

with expert intent. This chapter presents:

• A structured representation of process decomposition and region-based

task modeling for deformable object operations

• A data collection and feature analysis pipeline to support preference mod-

eling from human demonstrations,

• An IRL-based policy learning framework for sequencing tasks under vary-

ing constraints, and Experimental validation on a real-world industrial

application involving high-mix, low-volume parts.

6.2 Related Work

IRL Overview: The field of IRL has been mainly categorized under the um-

brella of imitation learning, with the objective of learning an expert’s policy.

Earlier work in IRL focused on imitating an expert’s policy on already demon-

strated data or simple tasks [80]. There are four main IRL approaches: Max-

margin IRL, Max-entropy IRL, Bayesian IRL, and Regression/Classification

IRL [81]. Max-entropy-based methods [82] propose a solution to select weights

in the presence of incomplete information. In contrast, Bayesian-IRL meth-

ods [83] compute a probability distribution over reward functions based on

informative priors. Most of the work in IRL assumes a linear reward func-

tion, except for [84], which focuses on sub-optimal stochastic demonstrations.

In this work, our problem requires us to strictly comply with the expert in

the absence of any noise. Besides finding a reward function for the expert,
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we also need to penalize sequences that result in poor process performance.

Therefore, max-entropy and Bayesian IRL-based methods are not suitable.

Max-margin methods proposed by [85, 86] introduce the concept of scaling

sequences based on their proximity to the expert’s demonstration. There-

fore, max-margin-based methods provide the appropriate learning scheme for

our problem. However, previous work on max-margin-based methods did not

address scenarios with varying levels of preferences, feature interactions, and

limited demonstrations. Recent work proposed in [87–89] introduces the active

learning element to learn reward functions from preferences. However, these

methods do not take into account interacting features.

IRL in Manufacturing: IRL for sequencing has been studied for assembly

tasks in [90–92], but the focus is on assisting the expert rather than trans-

ferring policy to the robot. Several works also focus on learning rewards for

insertion tasks [93, 94]. In [95], the authors mention using IRL for sequencing

for machining tasks, but do not account for transferring policies to a robot.

Prior work in learning from demonstration has explored the problem of solv-

ing surface finishing operations [96–99], but they do not address the region

sequencing problem.

Figure 6.2: Overview of the proposed framework for learning task
sequencing policy.
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6.3 Problem Formulation

We formulate the problem described in Section 6.1 as a task sequencing prob-

lem, where the robot has to perform a set of subtasks to complete the process.

Assumptions: Our assumptions for the task sequencing problem are as

follows:

• Demonstrations are optimal and have no noise as they are performed by

experts.

• Features and Feature Interaction information can be captured from the

expert’s process description.

• Only pairwise feature interactions are present.

State Preliminaries: Section 6.1 describes processes that feature a tool, as

shown in Fig. 6.2. The tool is divided into Ni regions, ∀i ∈ 1, .., d, where d is

the number of demonstration tools. Regions are indexed alphabetically based

on their appearance row-wise from left to right. A task for the agent is defined

as processing a region on the tool, so the agent’s objective is to compute a

desirable sequence for performing theseNi tasks.. We denote the human expert

by H, whose performance and effort-based preference we are trying to model.

The autonomous agent that learns from H will be represented by A. The state

of A gets denoted as s ∈ Si,Si 7→ RNi , ∀i ∈ {1, .., d}, and we represent s as a

set of tasks that A completes. The action that A takes at a state s is denoted

as a ∈ A, where A is a set of available actions at state s. An action a signifies

the task that A chooses to perform. In our case, A gets defined by the set of

tasks that are yet to be executed by the agent. The state transitions s → s′

due to action a are assumed to be completely deterministic.

Transition Cost: In this chapter, we will refer to reward as a negation of cost.

Hence, our formulation will refer to the IRL problem of maximizing reward as
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minimizing cost. We define the policy of the agent as to follow a minimum

cost sequence for performing the Ni tasks. In a standard inverse reinforcement

learning problem, the cost for transitioning to a state gets defined as a linear

function of weights w and an array of feature values ϕ dependent only on the

agent’s current state [100]. The nature of the sequencing problem we study in

this work is such that the feature array is a function of the state s and action

a. Additionally, as per H, certain feature pairs in the feature array might

interact with each other.

Therefore, we define the cost of transition for A by Eq. 6.1, where ϕ(s, a) =

{ϕ1, ϕ2, ..., ϕn} is an array of feature values that are dependent on state transi-

tions. The set of interacting features for a subset of feature values from ϕ(s, a)

is denoted by ϕint(s, a) = {(ϕi · ϕj)1, .., (ϕk · ϕl)m},∀i, j, k, l ≤ n, i ̸= j, k ̸= l.

The total number of feature interactions suspected by the expert H is m. In

our formulation, non-linearity is introduced by ϕint(s, a). We will denote our

unified weight array as w = {w⌢wint}, that is a concatenated array of the

linear feature weights w and the interacting feature weights wint.

c(s, a) = wTϕ(s, a) + wTintϕint(s, a) (6.1)

w, ϕ ∈ Rn, ∀ϕ : s ∈ S, a ∈ A

wint, ϕint(s, a) 7→ Rm

Learning Performance-based Preferences: The human expert H demon-

strates a desired sequence ξ∗ on a sample tool. The agent A has access to d

demonstrations, each on different tools. We define the demonstration dataset

as D = {δ1, δ2, ..., δd}, where δi = {ξ∗i ,Fi, Ni}, Fi is the feature information
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for ith demonstration tool from which ϕ is computed. Furthermore, the ex-

pert H also gives information about the interacting feature set ϕint for the

demonstration dataset D. Now, as described earlier, the agent has to solve

the following problem:

C(ξ∗i ) ≤ C(ξ
j
i ),∀ξ

∗
i ∈ D, ∀ξ

j
i ∈ Pi 7→ Rp (6.2)

where,

C(ξi) = wTΦ(ξi)

Φ(ξi) : {
Ni∑
k=1

(ϕ(sk, ak)
⌢

Ni∑
k=1

ϕint(sk, ak)}

In Eq. 6.2, C(ξi) is the total cost incurred by the agent for following a sequence

ξi. We define Pi as the set of all possible sequences for the ith tool. Φ(ξi) is

an array of the sum of individual feature values and interactions for the state

transitions in sequence ξi. Thus, we find a weight array w∗ by solving Eq. 6.2

such that the expert demonstrated sequence ξ∗i is the lowest cost sequence for

all the corresponding tools in D.

Learning Effort-based Preferences: The feature values used for the prob-

lems discussed in Section 6.1 are geometric features of the tool. Thus, for a

given demonstration in D, there might be several sequences with equivalent

feature arrays due to the symmetry of the tool. These equivalent sequences

(ξei ) will have identical costs to the user-demonstrated sequence (ξ∗i ). We

formulate this feature equivalence property by Eq. 6.3.

Φ(ξ∗i ) ≡ Φ(ξei ); ξ
e
i ∈ Ωi, ∀i ∈ {1, ..., d} (6.3)
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where, Ωi is the set of sequences for ith demo that exhibit the equivalence

property in Eq. 6.3. However, as discussed in Section 6.1, the expert H might

prefer specific sequences in Ωi due to their effort-based preferences. H might

choose sequences that start at a specific task and end at a specific task to

improve their ease of operation. In this case, H is queried to compare their

preference for the equivalent sequences in relation to corresponding ξ∗i ’s in

D. The objective is to learn a preference penalty function η such that the

preferred sequences ξprefi have the lowest penalty. Hence, we can formulate

the effort-based preference learning problem as follows:

η(ξprefi ) < η(ξji ), ∀i ∈ {1, ..., d}, ∀ξ
j
i ∈ ψi, ∀ξ

pref
i ∈ ψ∗

i (6.4)

where, η(ξ) = wTz z(ξ); and z(ξ) are effort-based preference features for an

arbitrary sequence ξ. We denote, ψ∗
i ⊆ Ωi as the set of preferred sequences,

and ψi ⊆ Ωi as the set of unpreferred sequences s.t. ψ∗
i ∩ ψi = ∅. It is

important to note that adding z(ξ) in learning the weights w in Eq. 6.2 would

not be appropriate as z(ξ) will change based on external factors mentioned in

Section 6.1.

In situations when the expert has no preference between the demonstrated

sequence and any other equivalent sequence ξe, we do not need to learn the

preference penalty η(·). We can set the value of η(ξ) = 0 for any arbitrary

sequence ξ.

Feature Interaction Coverage in Demonstrations: To learn the expert’s

preferences, the demonstrations need to be informative with respect to feature

interactions. Assuming access to enough demonstrations to capture all levels

of feature values and interactions for the transitions in ξ∗ is impractical. We

propose feature interaction coverage as a metric that assesses whether the

dataset D enables learning of these interactions. This metric can then be
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used to query the expert for more informative demonstrations if needed. We

represent this metric as ρ(·) and define it as follows:

ρ(D) ∝ κ({ϕ, ϕint}) (6.5)

where, the function κ(·) computes the overall extent of coverage of ϕ and ϕint.

Thus, using ρ(·), we should be able to query H to ask for specific demonstra-

tions that improve feature coverage.

6.4 Method

In the previous section, the formulation that we proposed engenders three

main problems: (1) Learning H’s performance-based preference, (2) Learn-

ing effort-based preferences, and (3) Feature interaction coverage. The entire

framework is depicted in Fig. 6.2. We build upon the structured max-margin

approach outlined in [85] to solve the proposed problem. Section. 6.2 gives the

reasoning for selecting margin-based IRL methods for our approach. Before we

commence learning performance and effort-based preferences, we evaluate the

extent of feature coverage in the demonstration data. Once we have enough

coverage of feature values, we proceed with learning. Subsequently, we define

a graph-based state space representation for each demo tool in D. Then, we

introduce our iterative max-margin approach with an active learning element

for diversely sampling the training data and a cost function designed to solve

the problem in Eq. 6.2.

6.4.1 Estimating Feature Interaction Coverage

To solve the feature interaction coverage problem, we employ a 2-factor fac-

torial design of experiments technique to capture feature values and feature
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interactions on three levels: high, medium, and low. For each interaction level,

we count the instances such that the remaining feature values are uniformly

distributed. We use the standard Chi-squared test for determining whether

the features are uniformly distributed with an α value of 0.05 [101]. Once we

ensure uniform distribution, we compute a confidence metric of D for capturing

all expected interactions according to Eq. 6.6.

ρ(D) = no of interactions captured
total number of interactions possible

(6.6)

Based on the weakly captured interactions, we query the expert H to provide

demos with a specific feature interaction value. This helps improve the ρ(·)

value of the dataset, as shown in Section 6.6.

6.4.2 Graph-based State Sequence Representation

After obtaining D with sufficient feature value coverage, we represent the

state space (Si) for every demonstration in D in the form of a separate graph

Gi,∀i ∈ {1, ..., d}. Each node/vertex v in the graph is a state s, and each edge e

is the cost to transition between states s→ s′. Therefore, each demonstration

δi ∈ D has a corresponding Gi.

In Gi, we use a one-hot vector of size Ni to encode each node, where the

completed tasks are represented as 1’s and incomplete tasks are represented as

0’s. We define sstart as a state node for which none of the tasks are completed

by A and send is the state node when A has completed all the tasks for a given

tool. Naturally, sstart becomes a vector of 0’s of size Ni, and send becomes

a vector of 1’s of size Ni. Thus, an arbitrary sequence ξi for Gi becomes the

path traversed from sstart to send. As discussed, our objective becomes to

learn w∗, such that ξ∗i will be the shortest cost path from sstart to send for all

the corresponding Gi’s. For a demonstration with N tasks, there are a total of
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N ! possible sequences, which necessitates a specialized approach for learning

w∗.

6.4.3 Loss function for performance-based preferences

The Quadratic formulation, as described in [85], is the most commonly used

method to formulate the max-margin problem. Such a formulation with con-

straints becomes inefficient to optimize when we have a large number of se-

quences with cost values significantly higher than the lowest cost sequence

[102]. After computing the cost of a random sample of sequences, we found

that 55% of sequences still had a cost value 70 times higher than the lowest

cost sequence. Therefore, we resort to an online cost function where the con-

straints are absorbed into the objective function itself. Our unconstrained loss

function is as follows:

L(w) = 1

d

d∑
i=1

[
αi
pi

pi∑
j=1

(wTΦ∗
i − wTΦji ) +

βi(wTΦ∗
i −min

Φj
i

(wTΦji )) + γi (wTΦ∗
i − wTΦsi ) ] + λ||w||2 (6.7)

In Eq. 6.7, αi, βi, γi, are hyperparameters and λ is regularization term. Φ∗
i rep-

resents the feature array for the user demonstrated sequence ξ∗i in D. To train

the model, we generate an initial sample of sequences xi ∈ X 7→ Rpi of size pi

for ith demo, as per Section 6.4.4. For the initial sample xi, min
Φj

i
(wTΦji )∀j ∈

{1, .., pi} returns the cost value for the lowest cost sequence in xi. The fea-

ture array for the overall minimum cost sequence ξsi of the corresponding Gi is

denoted by Φsi . We minimize this loss using a generalized version of gradient

descent based on sub-gradients [103]. Section 6.6 gives an intuition of every

term in Eq. 6.7.
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6.4.4 Learning performance-based preference

The state space of the proposed problem experiences rapid complexity growth

due to the problem’s combinatorial nature. For a given Gi, there are overall

Ni! possible sequences. Hence, solving this problem with one-shot optimiza-

tion can be inefficient. To address this challenge, we adopt a solution that

begins with a nominal sample size pi drawn from the entire population of se-

quences for the ith demonstration. However, random sampling may result in a

poor representative sample, particularly when many sequences have equivalent

feature values (see Section 6.3). To generate a diverse initial sample, we use a

similarity metric based on cosine similarity between feature values of a given

sample ξ and expert-demonstrated sequence ξ∗. We then iteratively update

this sample set with sequences with costs below a certain threshold compared

to ξ∗ as described in Algorithm 3.

Algorithm 3 takes the demonstration dataset D as input. Using Fi we com-

pute the feature array ϕ(s, a) and initialize the corresponding graphs Gi for

each demonstrations in D with w. We generate an initial sample data X by

performing cosine similarity-based diversity sampling. This sample helps max-

margin appropriately scale the cost of the truly bad sequences compared to

the good ones. Since our initial sample size is a small representation of the

entire sequence population, we perform learning in an iterative manner. After

every iteration, we compute the first Ki shortest cost sequences and query H

to compare if they are similar to ξ∗i . We then update the sample space X

with non-similar sequences for all δi ∈ D. Using such an iterative update and

starting with a diverse sample helped us converge faster [104].
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Algorithm 3: Performance-based Preference Learner
Input: D
Initialize:
w : Random Initialization
ϕ(s, a): Compute ϕ(s, a) ∀δi ∈ D
Gi: Initialize Gi = (v, e) with w ; ∀δi ∈ D
αi, βi, γi: Hyperparameters
pi: Initial sample size for ith demo in D
Ki: Dataset update parameter for ith demo in D
ζ: Learning Rate
T : Total Number of Iterations
t = 1: Current Iteration Count
GenerateSample:
X : x1, x2, ...., xd;xi 7→ Rpi , ∀i ∈ {1, .., d}

1 while (not converged) do
2 while t < T do
3 Compute(C(ξ∗i ),∀i ∈ {1, .., d})
4 Compute(C(ξji ),∀i ∈ {1, .., d}, ∀j ∈ {1, .., pi})
5 Compute (C(ξsi ),∀i ∈ {1, .., d})
6 Compute Loss: L(w) as per Eq. 6.7
7 Compute Subgradient g of L(w)
8 w← w− ζg
9 reinitialize Gi, ∀i ∈ {1, .., d} with updated w

10 t← t+ 1

11 if (C(ξ∗i ) == C(ξsi ),∀i ∈ {1, .., d}) then
12 converged = True
13 else
14 Compute Ki shortest cost sequences in Gi, ∀i ∈ {1, .., d}
15 Query H to check for similarity between the Ki sequences and

demonstrated sequence
16 update X with non-similar shortest cost sequences
17 t = 1

18 return w
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Algorithm 4: Effort-based Preference Learner
Input: D
z(ξi): Positional features for a sequence ∀δi ∈ D
Q : {Ω1,Ω2, ...,Ωd}
Initialize:
wz: Random Initialization
ψ∗ = []: Set of preferred sequences,
ψ = []: Set of unpreferred sequences,

1 for Ωi in (Q) do
2 ψ∗.append(z(ξ∗i ))
3 for ξj in (Ωi) do
4 preference = evaluateHpreference(ξ∗i , ξj)
5 if preference then
6 ψ∗.append(z(ξj))
7 else
8 ψ.append(z(ξj))

9 if (len(ψ) == 0) then
10 wz = 0
11 else
12 Learn wz using max-margin approach with L(wz) as the loss function (Refer

Eq. 6.8)

6.4.5 Learning Effort-based Preference

Algorithm. 4 depicts how we learn a penalty function based on Eq. 6.4. This

penalty function is trained based on positional feature values of the starting

and ending regions in a sequence ξ. A simple quadratic loss function gave us

the desired results as follows:

L(wz) =
λz
2
||wz||2 (6.8)

s.t.∀i, j max
ξi∈ψ∗

η(ξi) + ϵ < min
ξj∈ψ

η(ξj)

where, ψ∗ is a set of sequences that are preferred by H and ψ is a set of

sequences that are not preferred by H. ϵ is a slack variable. When the expert
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equally prefers all equivalent sequences, i.e., ψ = ∅, we set η = 0 for all

sequences.

6.5 Data Collection

The proposed method is evaluated on the composite prepreg layup process.

Chapter 7 [3] showcases how this process is performed in a sequential manner,

where the task of the agent is to conform the sheet region-by-region on top

of the tool. Our dataset comprises two categories: 1. Real Dataset (Dreal)

and 2. Synthetic Dataset (Dsyn). Dsyn is a simplified version of Dreal. We

use Dsyn for model evaluation and ablation studies, whereas Dreal is used for

training our model and performing physical robot experiments. Dreal consists

of industrial tools used in the layup process (Refer Fig. 6.3). Overall we

have 10 tools each in Dreal and Dsyn. We use a clustering algorithm based on

feature attributes such as curvature, relative height, and aspect ratio of the

tool [105] to transform the given tool’s CAD into local regions. We then record

the expert’s desired sequence on all the tools in Dreal. In this case, we use a

total of 10 feature values that are selected after consulting with the process

expert for learning performance-based preferences1. The process expert also

provides information on pairwise feature interactions. In our case, the expert

suspected interaction between a region’s relative height and curvature, as well

as region orientation and curvature.

We validate the effectiveness of our model in generating high-quality parts

by conducting physical robot experiments on two tools selected from Dreal,

as illustrated in Fig. 6.3. While executing the layup task on these tools, we

record the expert’s motion and force data. We design a custom handheld tool

with an embedded force sensor to capture the force data. The motion of this

1More details on the features can be found at: https://sites.google.com/usc.edu/irlfortasksequencing
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tool is tracked via an OptiTrack motion capture system with an accuracy of

±0.1mm.

Figure 6.3: Two tools are selected from Drealfor collecting human motion
data, and then the robot performs the same process. The tool on the left is
used for training, and the tool on the right is used for testing.

6.6 Results

We perform ablation studies for our loss function on Dsyn by setting a known

weight value wsyn. The weight array wsyn represents a hypothetical human

preference. We then evaluate the shortest cost sequence and try to recover

wsyn. We use a 6:4 training to testing split for Dsyn and Dreal. For Dreal, we

train our model and perform a robot demonstration on a testing tool.

Performance-based Preference Learning Results (Dsyn): Fig. 6.4 il-

lustrates how every term in our loss function in Eq. 6.7 has an impact on

performance. The average term with α hyperparameter helps penalize bad

sequences by ensuring a good spread of cost values for sample sequences. The
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min term for the training sample with β hyperparameter helps effectively pe-

nalize sequences close to the demonstrated sequence when we update the initial

sample. Lastly, the shortest-path sequence term with γ hyperparameter helps

us achieve convergence in fewer updates.

Figure 6.4: In the absence of the α term, other sequences were not
appropriately scaled despite ξ∗ being the lowest cost. The β term scaled
the minimum cost data points properly after iterative updates, as seen
from the shift in cost of red dots in Update Number 1 and 2. The γ term
required more update steps for convergence. The y-axis violations represent
the number of training demonstrations where the desired sequence was not
the lowest cost.

Effort-based Preference Learning Results (Dsyn): Fig. 6.5 shows that

initially, the cost for all equivalent sequences for an example tool is the same

for a learned weight array w∗. Eventually, the learned η levied an appropriate

penalty for the less preferred sequences by the expert. In our implementation,

we use the normalized coordinates of the tool’s individual region centroids as

the positional features for learning. In the example in Fig. 6.5, the expert had

a starting preference at a region to the right of the tool.
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Figure 6.5: Note that C(ξ) is normalized. Also we scale the costs such that
η for ξ∗ is 0.

Feature Interaction Coverage Results (Dsyn): In order to evaluate

feature interaction coverage, we perform a study where we select different sets

of tools from Dsyn and assess their influence on ρ.

Set of Tools {1,2,3,4,5,6,7,8,9,10} {1,6,7,8,9,10} {2,3,4,6,7} {1,2,3,4,5}
Value of ρ 1.0 0.9 0.5 0.4

Table 6.1: Set of Tools means a subset of the 10 tools from Dsyn. The first
column is for all the Dsyn tools. We can see as we vary the dataset, ρ value
changes, indicating varying feature interaction coverage. For more info on
tools: website

Robot trials (Dreal): We train the model on 6 tools from Dreal and test

them on 4 tools. We used one of the tools on which we recorded the expert’s

motion and force data for training and the other one for testing. We trained

on a simpler tool and evaluated our model on a complex tool. We executed

the robot with motions learned from the human motion data for the sequence

generated for the testing tool. To test the effect on part quality, we scanned the
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human and robot laid-up parts and computed the error between the two. The

error was 0.7 mm (± 0.026mm), which is acceptable for the mentioned process

[106]. The demonstration data had a ρ value of 1.0, depicting that feature

interactions are captured at all levels. Our model evaluated well on both the

training and testing datasets, with the demonstrated sequence consistently

yielding the lowest cost for all tools in Dreal.

6.7 Summary

This chapter addressed the challenge of learning task sequencing policies for

deformable object manipulation in industrial contexts. Task planning is criti-

cal in processes such as composite layup, surface finishing, and coating, where

the sequence of operations directly influences the quality, reliability, and ef-

ficiency of the final outcome. The sequencing problem becomes particularly

important when working with deformable objects, where incorrect task order-

ing can result in irreversible defects or increased operational complexity.

An Inverse Reinforcement Learning (IRL) framework was presented for cap-

turing expert sequencing behavior through demonstrations and for learning

interpretable task policies. This formulation supports generalization across

different part geometries by modeling expert preferences based on extracted

features and their interactions. The introduction of a feature interaction cov-

erage metric provided a principled way to evaluate the representativeness and

utility of demonstration datasets. Additionally, the decomposition of pref-

erences into performance-based and effort-based components enabled more

flexible and explainable policy learning.

Importantly, the proposed framework is physics-informed, as it incorporates

domain-specific process knowledge and expert-derived priors about material
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behavior, task constraints, and operational best practices. These implicit phys-

ical cues, captured through demonstrations and feature engineering, guide

the learning process toward policies that are not only data-driven but also

grounded in the underlying physics of the task.

Experimental results on real and synthetic tools demonstrated that the learned

policies effectively reproduce expert task sequences and generalize to unseen

configurations. The IRL framework, when trained with well-structured demon-

strations and guided by task-relevant features, consistently achieved the lowest

sequence cost, indicating alignment with expert strategies. These results un-

derscore the utility of structured demonstrations and physics-informed policy

learning in transferring complex skills from humans to robots.

This chapter contributes to the overarching theme of this dissertation by show-

ing how task-level reasoning and sequencing can be learned from data, comple-

menting the low-level manipulation models and simulation tools presented in

earlier chapters. Together, these capabilities form a foundation for intelligent,

human-aligned robotic systems capable of performing high-skill deformable

object tasks in unstructured industrial environments.

The next chapter builds on this framework by exploring how learned simulation

models and task plans can be integrated into real-time manipulation planning,

enabling robots to execute adaptive actions under physical and task-based

constraints.
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Chapter 7

Simulation-based Grasp Planning for Deformable

Objects

7.1 Introduction

Figure 7.1: A composite sheet layup cell consisting of three robots and one
human.
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Planning manipulation strategies for deformable objects presents a set of chal-

lenges that differ fundamentally from those encountered in rigid-body manip-

ulation. These challenges become especially pronounced when manipulating

large, sheet-like objects, which introduce additional complications related to

gravitational drooping, material sagging, and non-uniform stress distribution.

As the scale of a deformable object increases, so does its susceptibility to com-

plex deformations. Larger sheets tend to exhibit more pronounced bending and

stretching behaviors, which are often difficult to predict and even more chal-

lenging to control. The situation becomes more complex when such sheets are

functionally engineered materials, such as those impregnated with adhesives,

exhibiting anisotropic stiffness, or composed of multiple layers. These physical

characteristics significantly influence how the sheet responds to grasping and

lifting actions, and any mismatch between planned and actual behavior can

result in irreversible failures.

Beyond the physical modeling challenges, task-level constraints also play a

critical role in deformable object planning. In many real-world applications, it

is not sufficient to simply grasp and lift an object. Robots must do so while sat-

isfying constraints related to geometry, contact conditions, tool accessibility,

and process-specific quality requirements. For example, avoiding premature

contact with a target surface, maintaining tension limits to prevent damage,

or ensuring that follow-on actions (such as folding, draping, or fastening) can

proceed without interference. These task-aware constraints must be accounted

for explicitly in the planning phase to ensure feasible and safe execution. To

address these challenges, this chapter explores the use of simulation-based

planning for deformable sheet manipulation. Simulation provides a flexible

and scalable solution to evaluate candidate manipulation strategies entirely

offline, thereby reducing dependence on costly and time-consuming physical

trials. By leveraging a physics-based simulator that accurately captures sheet
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deformation under various grasping and boundary conditions, robots can ex-

plore and validate grasp plans before deployment. Once a suitable plan is

identified, it can be executed online using feedback-based control to adjust for

real-world discrepancies.

The motivating use case for this work is automated layup of prepreg com-

posite sheets—a critical step in manufacturing high-performance structural

components. While automation in composite manufacturing has progressed

significantly for tape and fiber placement on simple geometries, prepreg sheet

layup remains largely manual due to its complexity. In this context, large

adhesive-backed sheets must be positioned with high precision on 3D molds,

often requiring multiple stages of grasping and draping. Small deviations in

sheet behavior during the grasping phase can lead to defects such as bridging,

wrinkles, or improper adhesion, making accurate grasp planning essential.

This chapter presents a simulation-driven grasp planning framework that uti-

lizes a thin-shell finite element simulator to model sheet deformation and op-

timize grasp configurations. A state-space search algorithm is used to identify

grasp points that satisfy both physical constraints (e.g., tension, drooping,

collisions) and task requirements (e.g., region coverage, reachability, minimal

repositioning). The system is deployed in a hybrid human-robot collaborative

cell involving three robots and one human operator. To bridge the simulation-

reality gap, a feedback-based intervention controller is introduced to adjust

plans online based on real-time sheet tracking.

Through this approach, the chapter demonstrates how simulation-based plan-

ning— when grounded in physical modeling and informed by task constraints

— can enable safe, efficient, and scalable manipulation of large deformable

sheets in industrial applications.
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7.2 Related Work

Work done in [22] was used to predict how a sheet will deform on a solid

mold using numerical models. Numerical models were also built to predict

prepreg behavior when it is grasped from specific points [107]. Kinematic

algorithms to map discrete points on the sheet to a non-developable surface

have also been studied [108]. Such models are then used to estimate the

draping sequence, which we use as an expert input in our work. Authors in

[109] reported different techniques that experts use during layup to enable

using motion primitives with robotic manipulators. Researchers have also

proposed cell concepts which can be used to automate the layup process in

[110, 111]. However, these methods do not address the automated trajectory

generation for multiple robots.

Work reported in [112] constructed a cell using an industrial robot and man-

ually programmed it to use custom end-effectors for applying pressure and

conforming the sheet. Specialized grippers for handling carbon fiber are also

required since we need to prevent the sheet from adhering to gripper surfaces

and sheet contamination [113, 114]. The proposed robotic cell extends the

functionalities of such custom hardware for automation.

Picking and placing carbon [115] fiber sheets is another area of active research.

A detailed review of pick and place operations is provided in [116]. Similarly,

state-of-the-art grasping and automation technologies have been reviewed in

[117]. Multi-arm manipulation of prepreg is what makes the process challeng-

ing since it requires coordination of different arms [118–127]. Robot motion

plans need to be automatically generated for making the process economical.

Survey papers on the manipulation of deformable objects include [128, 129].

Planning and control approaches have been developed for 1-D problems [130–

137], cloth folding [138–150], and ply manipulation [151–154]. Most of these
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applications define a final shape of the material, and planning and control algo-

rithms are used to reach this desired shape. Layup, on the other hand, requires

several intermediate steps to reach a desired shape on the mold. Each such step

consists of applying pressure and deforming the viscoelastic material. Hence,

grasp planning algorithms need to account for the underlying physics and

uncertainty. Thin-shell simulations are routinely done in multiple engineer-

ing communities, and are relatively well-understood [155]. Although methods

exist to tune thin-shell material properties to observations [156], thin-shell

simulation alone is not sufficient for composite-sheet robotic grasp planning.

This is because composite sheets must be laid in stages, and content-specific

knowledge must be added to avoid damaging the sheets and ensure that real

sheets are actually laid as predicted by the simulation.

Learning-from-demonstration techniques have been used to solve some chal-

lenging manipulation problems [157–159]. However, the uncertainty in the

process due to changing properties of the viscoelastic material over time makes

the manipulation a challenging task. Additionally, the complex interaction be-

tween draping and manipulation is also difficult to learn. Our previous work

done in [79, 106, 160, 161] proposed a grasp planner that generates tool paths

for simpler geometries and executes them under impedance control. In this

work, we extend our previous planning algorithms by a high-fidelity physics

simulator, account for the uncertainty during graph generation, and also pro-

cess constraints that can accommodate newer variants of molds and larger

sheets.

7.3 Problem Formulation

In this section, we formulate a multi-robot grasp planning problem for the

composite layup process. Prepreg composite layup is executed in multiple
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stages characterized by the number of draping zones n . A subject matter

expert determines these zones for the prepreg and mold, as depicted in Fig.

7.2. We represent these zones on the prepreg as RPi and the corresponding

ones on the mold as RMi, where i ∈ [1, 2, . . . , n] is an intermediary draping

stage. These zones are defined such that there exists a 1:1 correspondence

between RPi and RMi {RPi ⇆ RMi}. The layup process is thus defined as

a sequential procedure of conforming the draping zones of the prepreg RPi to

the corresponding ones on the mold RMi.

Figure 7.2: (a) Definition of draping zones on the Mold, (b) Definition of
corresponding draping zones on the Prepreg Sheet.

Let us consider an intermediate stage i of the draping process. We represent

the prepreg composite as a deformable surface mesh where each element of

the mesh is modeled with the prepreg’s material parameters. At the stage i,

the draping zones 1, . . . , i− 1 have already been conform to the corresponding

regions on the mold; hence, we only need to compute the grasping locations

for the remaining portion of the prepreg.

To understand how we define grasping locations, let us consider an example

of the composite layup for a mold, Part A, shown in Fig. 7.8. During the

layup process, a prepreg is always grasped along its periphery. Such potential

grasping points along the edge of the prepreg at a draping stage i are depicted
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(a) (b)

Figure 7.3: (a) Potential Grasping Location with corresponding {Φ,Ψ} &
(b) State Space Representation of the sheet

in Fig. 7.3a. We denote these candidate points by a variable Φ, where Φ

represents a potential grasping point along the prepreg’s boundary at stage

i. Additionally, every Φ can assume a 3D location {x, y, z, r, p, y} ∗ within

the feasible workspace, as shown in Fig. 7.3a. We denote this 3D location

of Φ by another variable Ψ. Here, Ψ represents the Cartesian position and

orientation of a particular grasping point Φ. Hence, a grasping location for

the prepreg gets characterized as a tuple of variables {Φ,Ψ}. We represent

this tuple by αi = {Φ,Ψ} that denotes a grasping location at a stage i in the

draping process.

In this study, we have focused on prepregs that can be supported by only two

grasping locations. We denote these two grasping locations by α1
i and α2

i as

depicted in Fig. 7.3b. At a particular value of α1
i and α2

i , the undraped portion

of the prepreg will assume a certain configuration. We define this portion of

the prepreg by Pα1
i ,α

2
i
. Consequently, the free region of the mold at this stage,

on which draping is yet to be performed, is represented as Mα1
i ,α

2
i
. Fig. 7.3b

gives an overview of these parameters for i = 4.

∗note: The orientation {r, p, y} is defined for the Tool Center Point of the manipulator that will grasp
the prepreg
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Therefore, the overall system’s state space representation Sα1
i ,α

2
i

can be for-

mulated as follows.

Sα1
i ,α

2
i
= {α1

i , α
2
i , Pα1

i ,α
1
i
,Mα1

i ,α
2
i
},∀i ∈ {1, 2, ..., n} (7.1)

A particular state Sα1
i ,α

2
i

is considered feasible if Sα1
i ,α

2
i

satisfies a set of process

constraints. We have identified eight such process constraints:

1. Elastic Energy: The elastic energy [29] represents the degree of deforma-

tion experienced by Pα1
i ,α

2
i

under external forces and constraints. Elastic

energy exceeding a threshold value indicates that the prepreg is experi-

encing excessive deformation.

2. Sheet to Mold Collision: Collision between undraped sections of the

prepreg and the mold can introduce innumerable defects. In the worst

case, it might lead to the scrapping of the currently manufactured part.

This constraint determines whether Pα1
i ,α

2
i

and Mα1
i ,α

2
i

are in collision.

3. Sheet Self Collisions: At a particular state Sα1
i ,α

2
i
, there is a possibility

that the prepreg Pα1
i ,α

2
i

is self-colliding. Self-collisions are undesirable in

any configuration as they cause wrinkles and other major defects.

4. Distance between the current Draping Region and the Mold: To achieve

successful draping for a zone {RPi ⇆ RMi}, the layup technician needs

to apply forces without affecting fiber alignment or overstretching the

sheet. To ensure this, the distance between RPi and RMi should be

below a minimum threshold.

5. Distance between the Undraped Region and the Mold: The undraped sec-

tion of the prepreg should maintain a minimum threshold distance from

the corresponding {RMi+1, ..., RMn}. This constraint ensures that there

is no undesirable contact between the prepreg and the mold while the

technician is draping a particular RPi.
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6. Droop Factor: Drooping is an undesirable phenomenon in the layup pro-

cess, potentially leading to prepreg misalignment and self-collisions. At

a system state Sα1
i ,α

2
i
, we define the droop factor by a linear function

f(d1, d2). Where d1 represents the maximum vertical distance between

the extremities of the prepreg and {α1
i , α

2
i }. While d2 represents the

maximum vertical distance between the vertices of the grasped edge and

{α1
i , α

2
i }, if this deformation value is larger than a certain threshold, we

can conclude that there is excessive drooping.

7. Sheet Alignment: A typical mold for composite draping possesses de-

marcations that define a bounding region for the prepreg draping. Sheet

alignment is the measure of undershoot or overshoot of the prepreg Pα1
i ,α

2
i

beyond this demarcated region.

8. Robot Manipulability Index: We introduce this constraint as a planning

constraint rather than a process constraint. The robot manipulability in-

dex [162] is a quality measure of the closeness of the grasping manipulator

to a singular configuration. This index ensures that the manipulator can

transition between stages i→ i+ 1 successfully.

The states satisfying these constraints are then termed as feasible states. We

represent one such feasible state at i by a variable ωi. Additionally, we intro-

duce a new parameter tii+1 which represents the time required for transitioning

between contiguous states {ωi to ωi+1}. The total time for the overall grasping

process then gets defined by T , such that T =
∑n−1

i=1 t
i
i+1. We formulate the

grasp planning problem as an optimization problem where the objective is to

minimize T for the overall draping process. An optimal grasp plan Ω is thus

represented by

Ω = {ω1, ω2, ..., ωn}, (7.2)
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such that Ω minimizes the total time T across all possible combinations of

feasible grasping locations ωi for the entire draping process (all n draping

zones).

7.4 Grasp Planning

In order to solve the multi-robot grasp planning problem formulated in section

7.3, we simulate the prepreg as a thin shell finite element model with appro-

priate material parameters using VegaFEM [11]. This model is employed to

simulate the sheet deformation at a state Sα1
i ,α

2
i
. The thin shell FEA simulator

can compute the Elastic Energy and Droop Factor constraints. The rest of

the collision and proximity constraints are evaluated using the Flexible Colli-

sion Library [163]. We use this architecture to perform constraint satisfaction

across Sα1
i ,α

2
i

to construct a search space graph of feasible states comprising

ωi’s. Subsequently, we compute a shortest-time path across the graph that

defines the optimal grasp plan Ω.

7.4.1 State Space Discretization

State space representation for the grasp planning problem was outlined in

Section 7.3. The states are defined by Sα1
i ,α

2
i
. The aim is to explore the space of

feasible grasping locations α1
i and α2

i . The state space is discretized in order to

search for feasible Sα1
i ,α

2
i
’s. Based on experimentation, a discretization factor

between 3-5% of the prepreg dimensions is used. The variables Φ and Ψ are

discretized accordingly. This makes the graph construction for the composite

grasp planning a combinatorial problem, which we tackle by bounding our

search space.

141



7.4.2 Bounding the Search Space

Let us consider an input prepreg sheet P approximated as a m-sided polygon

as shown in Fig. 7.4. Since P0 is a section of P that has already been draped,

we won’t be considering P0 in our heuristic design. Similarly, P1 is the incum-

bent section on which draping will be performed in direction v⃗. The sections

{P2, P3, P4} represent the undraped portion of the prepreg as described in Fig.

7.4. Parameters {ai, bi} denote the characteristic length and width of the cor-

responding sheet region Pi. Based on our experiments with prepreg draping,

we have observed that the direction of draping v⃗ and the length and width

of the entire prepreg {L,W} play a crucial role in selecting the edge along

which the prepreg should be grasped. The edge, which is orthogonal to the

direction of draping v⃗ and is positioned at a maximum distance from P1, is

optimal for grasping the prepreg; grasping along any other edges introduces

process constraint violations. If a region P1 has multiple directions of draping,

we would choose multiple edges accordingly. This discards the potential ωi,j

along the other edges.

In order to set the bounds on Ψ, we consider the characteristic lengths and

widths of P1 and of the set {P2, P3, P4}. The selected edge is divided into

two sections for {α1
i , α

2
i }. In our study, for an arbitrary Ψ, we set the orienta-

tion (r, p, y) to a value equal to (re, pe, ye), which represents the orientation of

selected edge e ∈ {1,m} in the base frame. We introduce a bound in the carte-

sian space for corresponding Ψ′s for {α1
i , α

2
i } as a function of the parameters

{a1, b1, a2, b2, a3, b3, L,W}.

Additionally, we assume symmetry between the positions of the manipulators

along the draping axis. This assumption is valid only if draping is performed

along the central axis of the prepreg. This further constrains the search space.

Hence we achieve a bounding region within which we can search for all feasible
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Figure 7.4: The Prepreg P is divided into different sections. P0: Draped
Section, P1: section about to Be Draped, P2: Left Undraped section, P3:
Front Undraped section, P4: Right Undraped section, a3, b3: Characteristic
length and width of the section with index 3.
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grasping locations ω′
is for every draping stage {1, 2, ...., n}. Once we generate

a set of appropriate {Φ,Ψ} for {α1
i , α

2
i } at ith stage based on our heuristic, we

apply the eight constraints and populate the search space graph with all the

feasible ωi. This leads to generating a search-space graph of depth n; recall

that n is the total number of draping zones.

The objective of the graph-based search is to compute a grasp plan that can

be executed in the minimal amount of total execution time T, as defined in

Section 7.3. Currently, we have a set of nodes representing the feasible grasping

locations ω′s. To create a complete graph G = {V, E} we need to define and

compute the cost associated with edges E.

During draping, the manipulators operate under impedance control. This is

mainly done to avoid any potential deformation of the prepreg under external

draping forces. As a result of the impedance control, the robots tend to move in

a radial direction towards the line of draping, which is defined by the boundary

between the draped and the undraped sections of the prepreg. This movement

is proportional to the impedance control parameters. In order to account for

this minor displacement, we add an additional layer at each i representing the

displacement in the location of the robots. We denote this layer by i′. The

manipulators travel to the next region i+ 1 from this intermediate layer.

7.4.3 Graph Construction

We set the edge cost to the time required for the manipulator to travel from

region i′ to i + 1. Note that edges are added only among nodes in adjacent

regions. The transition time cost of the manipulators for i −→ i′ can be assigned

to zero, as this transition does not influence the overall time for grasping

actions. This work assumes that the manipulators will execute the trajectories

at nearly constant velocities. They follow a linear path along the edge in case of
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Figure 7.5: Grasp Planner Search Graph. ωm1 is one of the feasible states at
i = 1 and t2111 is time taken to travel from node ω1

1′to ω
1
2

a change in the grasping vertex, then diagonally to the next grasping location.

We compute the time ti+1
i′ , which gives us the edge cost and completes the

construction of our search-space graph. Furthermore, to aid in finding the

path with the least cost and in the spirit of dynamic programming, we add a

pseudo source node connected to the first layer with zero-cost edges. Similarly,

a pseudo destination node is added at the nth layer with zero-cost edges. Refer

to Fig. 7.5 for the structure of the search space graph.

7.4.4 Grasp Plan Generation

Once the feasible graph G is constructed, the computation of the shortest-time

path becomes a shortest-path search problem. Using Dijkstra’s algorithm, we

compute the shortest path from the source node to the destination node. The

computed path is our solution Ω, representing the optimal grasp plan for the

two manipulators. Fig. 7.6 depicts the overall grasp planning process.
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Figure 7.6: Overall Process Flow for Grasp Planning.

7.4.5 Results on Representative Examples

Our planner was successful in computing feasible grasp plans for the molds

with a wide variety of complexities. Fig. 7.8 shows three representative exam-

ples. We conducted physical experiments on the mold Part A (see Fig. 7.7).

Table 7.1 displays the overall time analysis of the search. The time taken for

the search is directly proportional to the number of vertices and edges of the

prepreg mesh and the number of discrete states across which we conduct the

search.

Table 7.1: Grasp Planner Results

Type of
Mold

No. of
Draping
Regions
(n)

Plan Gen-
eration
Time
(secs)

Total
Grasp
Plan Pro-
cess Time
(secs)

Part A 9 945 154
Part B 6 641 122
Part C 8 236 135
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Figure 7.7: Grasping positions for the 9 draping zones in simulation and
physical setup for Part A.
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7.5 Intervention Controller

7.5.1 Overview

The viscoelasticity of prepreg materials lead to a change in their material

properties over time, which introduces errors in the material parameter model.

The plans generated from our proposed methodology in section 7.4 exhibit an

inherent dependency on the material parameter model. A potential error in

estimating the material parameters can lead to inaccuracies in the grasping

locations. An online closed-loop system is needed to check the integrity of the

prepreg draping process and raise an alert in case of deviations from the ideal

planned scenario. We introduce an intervention controller system that acts as

an online monitoring and verification system for the grasp plans generated by

our planning algorithm.

Figure 7.8: The three molds on which the grasp planner was tested. These
molds vary in terms of the complexity of surface features and the draping
strategy.

The sheet is tracked in real-time by employing a sheet tracking system com-

prising three RealSense D415 sensors. The primary function of this system

is to generate a filtered point cloud of the undraped composite sheet at each

grasping location. The raw point cloud data of the prepreg from each of the

three RealSense D415 sensors is filtered and merged to create a unified tracked
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point cloud of the composite sheet. This data can then be used to compare

the simulated and observed data.

7.5.2 Constraint Violation Monitoring

In order to detect anomalous behavior, we employ a similar constraint sat-

isfaction methodology as discussed in section 7.4. We record the prepreg’s

point cloud P (t) at time t using the RealSense sensors. We perform constraint

satisfaction on P (t) for the proximity, collision, and alignment constraints

by using a pre-recorded point cloud of the mold. We measure the force and

torque experienced by the manipulator’s grasping the sheet to monitor the

Elastic Energy.

During the planning, we archive the simulation data of the prepreg at each

of the feasible states in our optimal grasp plan Ω. This data comprises the

constraint values for the prepreg’s simulated model at every draping zone i.

We compare this data against the constraints evaluated from real-time sheet

tracking data to monitor and detect any constraint violations. The overall

process flow of constraint monitoring is depicted in Fig. 7.9. We compute the

error between the corresponding values of constraints for simulated data and

the point cloud P (t).

This error is a measure of the deviation of the sheet behavior at a draping

zone i. If the error value exceeds a certain threshold, we trigger appropriate

actions to take corrective measures (see section 7.5.3).

7.5.3 Control Actions

The intervention controller executes certain control actions based on the mag-

nitude of the error defined in the section. 7.5.2. As discussed earlier, variations
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Figure 7.9: Process flow of Constraint Monitoring Method.

in the prepreg material parameter model impact the error’s value. We typi-

cally classify the required level of intervention into three cases, depending on

the level of inaccuracy in the material parameter model (see Fig. 7.10).

Intervention scenarios include the following:

Figure 7.10: Process flow of our Intervention Controller.

• Case 1: Accurate Material Parameter Model In this case, the generated

plans observe minimal deviations. Our grasp planner will generate feasi-

ble plans without the need for intervention.
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• Case 2: Error-Prone Material Parameter Model: This case occurs when

there is a minor discrepancy in the material parameter model. Based

on the errors encountered in each of the constraints described in Section.

7.5.2 we take appropriate actions. For example, when the Droop Factor is

violated, we move the robots towards the extremity of the prepreg along

the grasped edge using a value proportional to the error.

• Case 3: Highly Inaccurate Material Parameter Model: In this case, due

major discrepancy in the material model, we experience incorrigible de-

viations from the desirable locations. Consequently, a halt condition is

triggered.

7.5.4 Results

Figure 7.11: Comparison between different cases for material parameter
model. Row 1 depicts the simulated data for the four control action cases,
and Row 2 depicts the Real Sheet Configuration of the corresponding data.

We evaluated the grasp planning methodology on Part A (see Fig. 7.8) using

the composite layup cell described in Fig. 7.1. The experiments were con-

ducted under three different scenarios to assess the robustness of the planner

and the effectiveness of the intervention controller.
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In Case 1, grasp plans were generated using an accurate material parameter

model (Fig. 7.11). The execution proceeded smoothly, with the intervention

controller reporting no violations of the predefined process constraints. The

planned grasp locations and deformations matched closely with the observed

sheet behavior during execution.

In Case 2, we introduced a 10% error in the material parameter model to sim-

ulate discrepancies between simulation and real-world behavior. As expected,

this led to violations in process constraints, which were detected by compar-

ing the real-time prepreg point cloud data with the simulation predictions.

Since the deviation was within the controller’s acceptable threshold, the inter-

vention controller successfully recomputed new grasp points. These updated

grasp locations were validated through additional simulations and confirmed

by comparing the resulting deformation with the actual sheet configuration.

The error at the adjusted locations remained within tolerance, allowing the

remaining draping plan to proceed with intermittent interventions across all

nine draping stages.

In Case 3, the material model was perturbed with a 20% error, exceeding the

controller’s predefined tolerance. As a result, the intervention controller acti-

vated its halt condition, preventing further execution to avoid compromising

the quality of the layup.

These results demonstrate the effectiveness of the simulation-informed grasp

planner and the resilience of the intervention controller in adapting to moder-

ate model inaccuracies, while also enforcing safe boundaries under significant

deviations.
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7.6 Summary

This chapter presented a simulation-driven framework for planning and execut-

ing grasping strategies for large, deformable sheets in industrial settings. By

leveraging a high-fidelity, physics-based model of sheet deformation, the frame-

work enables robots to autonomously generate feasible and task-compliant

grasp plans, specifically tailored to the challenges posed by large-scale, adhesive-

backed materials commonly used in composite manufacturing.

A novel state-space search formulation was introduced to explore candidate

grasping configurations under realistic physical constraints. This approach in-

tegrates simulation directly into the planning loop, ensuring that deformation

behavior, gravitational sag, and contact interactions are accounted for prior to

execution. The resulting grasp plans were validated through physical experi-

ments in a hybrid human-robot layup cell involving three collaborative robots

and a human operator.

The grasp plans were successfully validated in a collaborative human-robot cell

involving three robotic arms and a human operator. An intervention controller

was developed to handle discrepancies between the simulated and real-world

behavior, such as those introduced by material aging or parameter estimation

error. This controller uses real-time point cloud feedback from a sheet track-

ing system to detect violations of process constraints and dynamically adjust

the grasp strategy as needed. Experimental evaluations demonstrated the sys-

tem’s ability to adapt to moderate inaccuracies and halt execution safely when

constraints could not be maintained.

Together, the components introduced in this chapter demonstrate how simulation-

informed planning combined with closed-loop feedback control can enable the

manipulation of large, high-variance deformable objects with high precision

and reliability. This work contributes to the broader dissertation goal of
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building intelligent, physics-informed systems capable of executing complex

manipulation tasks in unstructured industrial environments.
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Chapter 8

Learning the Effect of Compliance on Manipulation

under Uncertainty

8.1 Introduction

(a) Satellite Assembly (b) Aerospace (c) Automotive

Figure 8.1: Examples of HMLV settings where screwdriving is performed
routinely in non-gravity assisted scenarios and tight spaces. Image
Courtesy: (a) https://nanoavionics.com, (b) https://blog.satair.com,
(c)https://assemblymag.com

Previous chapters have focused on the challenges of manipulating deformable

objects, emphasizing the need to model and plan around their dynamic be-

havior under contact, force, and environmental variability. However, deforma-

bility—or more broadly, compliance—is not limited to the object being ma-

nipulated. In fact, compliance has long been a foundational principle in the

design of tools that humans use for high-precision or high-uncertainty tasks.

From mechanical grippers with spring-loaded tips to hand tools like ratch-

ets and torque-limiting screwdrivers, compliance is intentionally embedded in
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tool design to improve adaptability, robustness, and ease of use in uncertain

or unstructured environments.

This principle is equally evident in industrial contexts. Many tools used in

manufacturing and maintenance rely on mechanical compliance—typically re-

alized through passive elements such as springs and dampers—to absorb po-

sitioning errors, reduce force peaks, and improve tolerance to misalignments.

Screwdriving, for instance, often involves rotary tools with embedded torsional

springs and compliant couplings that allow engagement to occur even when

there are small errors in position or orientation. These compliance mecha-

nisms facilitate task success and play a critical role in failure avoidance during

insertion.

Humans naturally exploit such compliance in tool use, enabling them to carry

out tasks reliably even in uncertain or dynamically changing environments.

This is especially important in maintenance or servicing tasks, where the

setup is often unstructured, and the object geometry or pose may vary sig-

nificantly across instances. While mass-manufacturing environments mitigate

such uncertainty through expensive fixtures and precision jigs, high-mix, low-

volume (HMLV) scenarios—characterized by part variability and small batch

sizes—cannot justify the cost of such infrastructure (Refer Fig. 8.1). In these

cases, humans leverage both passive compliance in the tool and active com-

pliance in their motor control strategies to complete tasks reliably. With the

ongoing labor shortage in manufacturing [164], there is an urgent need to

transfer this adaptability to autonomous robotic systems [165].

This chapter investigates how robots can exploit compliance in tooling and

control to perform screwdriving tasks in uncertain environments, particularly

those representative of HMLV settings. Screwdriving is selected as the central

use case due to its pervasiveness in assembly and maintenance operations, its
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sensitivity to positional uncertainty, and the availability of established tool

designs that incorporate compliance.

In contrast to traditional automation systems designed for structured, repeat-

able operations, the framework developed here supports autonomous robotic

screwdriving under uncertainty (Refer Fig. 8.2 for a demonstration of the

system for a servicing operation). The proposed system uses a combination

of:

• A passively compliant rotary tool

• A robotic manipulator operating in Cartesian impedance control mode

• Multimodal sensing (vision and force)

Such a setup enables the robot to absorb minor misalignments and to reason

over the effects of compliance during the screwdriving process. A key contri-

Figure 8.2: The Proposed mobile screwdriving system performing servicing
operation. The image from the in-hand camera on the bottom left corner
shows how the screw is offset on initial contact. The reader is advised to
review the video at Video Link for better understanding

bution of this work is a physics-informed learning model that captures how
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compliance—both passive and active—influences the dynamics of the screw

tip during the insertion phase. Using Sparse Identification of Nonlinear Dy-

namics (SINDy), the system learns interpretable models of screw-tip behavior

as a function of tool compliance and robot orientation. This model is not only

predictive but also plays a critical role in decision-making, enabling the robot

to adapt insertion strategies or trigger reattempts when necessary.

Additionally, a robust decision-tree-based failure detection mechanism is in-

troduced to monitor and respond to process anomalies. This system uses

force-based signals, rather than image-based cues, to classify failure modes

and trigger corrective actions. By integrating model-based prediction with

real-time sensing, the system can detect five distinct failure types and respond

either by adapting the control strategy or escalating to human intervention.

The contributions of this chapter include:

• An autonomous mobile robotic screwdriving system featuring a passively

compliant rotary tool mounted on a robotic manipulator operating in

Cartesian impedance control mode, equipped with 3D vision and force-

sensing capabilities enabling it to perform screwdriving in high-mix, low-

volume environments with significant uncertainty.

• A self-supervised, physics-informed model of screw-tip dynamics that

correlates system parameters with process success rates and completion

times, enhancing the system’s ability to adapt and predict performance

across various parts and screw types.

• A decision-tree-based failure detection system that identifies four dis-

tinct failure modes, enabling corrective actions. Additionally, we intro-

duce a time-based failure detection mechanism that leverages the physics-

informed dynamics model to determine when a reattempt at screwdriving

is necessary.
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Extensive experiments validate the system’s ability to perform screwdriving

across ten real-world industrial parts and three screw types (M4, M5, M6),

including tests in non-gravity-assisted configurations. The system achieves a

100% success rate under hole pose uncertainties up to 4 mm / 3o, with an aver-

age completion time of five seconds, highlighting its suitability for deployment

in real-world, high-variability environments.

8.2 Background

The importance of compliance in autonomous screwdriving has long been rec-

ognized, with nearly all commercially available screwdriving tools incorporat-

ing some degree of compliance in their design. Additionally, active compliance

strategies, such as impedance and force control, are commonly employed [166].

While compliance is a well-established concept, its precise influence on screw-

tip motion, insertion dynamics, and failure modes remains underexplored. Pre-

vious work [4] provided an initial investigation into these effects, focusing on

how compliance affects success rates under uncertainty. In this section, we

build upon that foundation by offering a systematic analysis of both passive

and active compliance, detailing their distinct roles in error compensation,

failure mitigation, and operational efficiency in autonomous screwdriving.

Passive Compliance: Passive compliance arises from the inherent design of

the screw-driving tool and its mechanical components, such as the motor, ar-

mature, shaft, and springs. These components collectively impart compliance

to the system, which can be modeled as a spring-mass-damper system. While

passive compliance cannot be actively controlled or adjusted during opera-

tion, it can be characterized to understand its influence on screw-tip dynamics

during the screw-driving process.
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(a) Passive
Compliance (b) Active Compliance (c) Screw-tip Motion Band

(d) Time snapshots of screw-tip with significant hole-offset

Figure 8.3: (a) Compliance in the screwdriving tool. Here, K is the
stiffness, and C is the damping parameter. For the tool, there is compliance
even in the torsional direction, as shown in (b) Compliance in the Agent
due to impedance control. The robot’s end-effector acts as a virtual
spring-mass damper system. Here, KRobot is the stiffness and CRobot is the
damping. (c) Motion Band Traced by Screw-tip, due to interaction
between the compliances. Chances of success are high when this band
passes through the hole’s attractor basin, (d) Time snapshots of screw tip
motion depict how screwdriving can be successful even in the presence of
significant hole offset. At t3, the screw tip enters the hole’s attractor basin,
initiating the alignment process. The robot’s active compliance then
facilitates correction, ensuring smooth and successful insertion despite
initial misalignment.
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Active Compliance: Active compliance is introduced through the use of

impedance control during the manipulator’s screw-driving operation. By regu-

lating stiffness and damping parameters in the Cartesian impedance controller,

the system ensures safe interaction with the part by avoiding excessive forces.

These tunable parameters significantly influence the screw-tip dynamics, al-

lowing precise adjustments to the system’s compliance behavior and improving

adaptability in high-uncertainty environments.

The interaction between passive and active compliance results in a character-

istic motion pattern of the screw tip upon contact with the surface, forming

what we define as the "screw-tip motion band." This motion band represents

the bounded region within which the screw tip moves as a consequence of

the combined effects of compliance in both the robot and the environment

(Refer Fig. 8.3). The shape and extent of this band are influenced by factors

such as impedance parameters, contact forces, and the screwdriving dynamics.

Understanding this motion band is crucial for accurately modeling screw-tip

behavior, predicting insertion success, and designing corrective strategies for

failure recovery.

8.3 Related Work

8.3.1 Robotics and Automation in Screwdriving

Screwdriving is a routine yet crucial industrial operation, and numerous au-

tomation methods have been explored over the years [167–169]. Advances

have been made in various aspects, including smart end-effector design [170,

171], part-feeder and automated gantry systems [167, 172, 173], visual ser-

voing [174], and vision-based screwdriving systems [175, 176]. Additionally,

some research has explored robotic manipulation of hand tools designed for
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human use [177]. However, very few studies have systematically analyzed the

underlying factors that contribute to successful screwdriving or attempted to

quantify them. Moreover, research on screwdriving under uncertainty, par-

ticularly in high-mix, low-volume (HMLV) manufacturing, remains limited.

In [178], the authors propose a screwdriving approach for uncertain environ-

ments, but their focus is on servo-controlled torque estimation without exter-

nal sensors. Similarly, [179] presents a vision-based approach for operating in

semi-structured environments, yet it requires extensive calibration and does

not explicitly quantify the effects of uncertainty. Other works, such as [180,

181], have addressed screwdriving for maintenance applications. However,

[180] primarily focuses on simulation, while [181] examines a non-standard

screwdriving task specific to a single screw type. A comprehensive survey

by [166] provides an overview of automated thread-fastening systems, for-

malizing key terminologies that we adopt in this work. Among the critical

factors in screwdriving, compliance has long been recognized as essential for

successful operation [182–184]. While several studies have leveraged compli-

ance in screwdriving, no prior work has quantitatively analyzed its impact

on success rates. More recently, research efforts have focused on developing

robotic frameworks and policies for manipulating human-centric screwdriving

tools [172, 177, 185]. However, numerous robot-compatible screwdriving tools

are commercially available that could enhance system resilience and efficiency.

While previous works have demonstrated the significance of robotic screwdriv-

ing across various applications, the proposed work’s focus is on quantifying the

effects of compliance and uncertainty on success rates, studying different screw

types, and investigating applications in HMLV settings.
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8.3.2 Defect Detection for Screwdriving Operations

In Section. 8.6, we’ve defined the five key modes of failure that we’re interested

in detecting alongside the nominal operation mode. In a high-speed operation

such as screwdriving, detecting failures is quite important. Naturally, exten-

sive research has been dedicated to failure detection, [186–189], with a strong

emphasis on using wrench signals as the primary sensing modality. However,

most prior work has been limited to detecting only a small subset of failure

modes. In previous work [4], a multi-modal deep learning approach that fuses

vision and wrench data to classify two failure modes was explored. While

learning-based methods offer advantages, particularly in structured environ-

ments with low uncertainty, they are often highly sensitive to environmental

variations and require large amounts of training data to generalize effectively

[190–192]. Similar trends can be observed in recent data-driven anomaly de-

tection methods [193–195], which have demonstrated strong performance un-

der controlled conditions but often struggle with scalability and robustness in

real-world deployments, especially in high-mix, low-volume (HMLV) settings

where uncertainty is high. To address these challenges, we seek a more scalable

and generalizable failure detection approach. Incremental learning techniques,

such as the one proposed in [196], have been explored for screwdriving appli-

cations, but they primarily focus on binary anomaly detection-determining

whether a state is normal or anomalous-rather than providing a fine-grained

classification of failure modes. Similarly, Hidden Markov Models (HMMs)

have been proposed for failure detection [197], leveraging screwdriving pro-

cess mechanics and a stage transition graph to improve generalization across

screw types with minimal labeled data. While HMMs offer an efficient way

to model process stages, their reliance on structured stage transitions makes
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them less effective in high-mix, low-volume (HMLV) settings, where screw-

driving processes often deviate from expected sequences. Additionally, HMMs

require sequential inference over multiple time steps, which introduces com-

putational overhead and limits their suitability for real-time failure detection

in high-speed screwdriving. In contrast, Decision tree-based methods have

been successfully utilized for various tasks in high-mix manufacturing [198],

demonstrating their effectiveness in handling diverse and dynamic production

scenarios. Authors in [199] demonstrated the advantages of using a decision

tree to detect failures for one screw type in the presence of only passive com-

pliance. The work proposed in this chapter draws inspiration from them,

where we build upon the decision-tree-based framework for force-based failure

detection. Furthermore, the proposed approach extends this decision tree-

based methodology by introducing a more refined feature set and allowing for

generalization across different screw types (Refer Section. 8.6 for details). Ad-

ditionally, the data augmentation strategy enables effective failure detection

with substantially lower data requirements, making the proposed approach

more suitable for real-world HMLV manufacturing environments.

8.3.3 Dynamics Modeling for Screw-tip Motion

The dynamics of the screw tip studied in this work exhibit highly non-linear

behavior, primarily due to the interplay between compliance modes and ex-

ternal forces. The primary objective in modeling the screw-tip dynamics is

to characterize the effect of compliance on its motion rather than achieving a

complete predictive model of the entire screwdriving process. Recent advances

in learning-based methods have unlocked new possibilities for modeling such

complex, non-linear dynamics [200, 201]. Over the past decades, data-driven

approaches have demonstrated remarkable success in capturing intricate object

dynamics [202, 203]. However, most neural network-based models require large
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amounts of training data and often struggle with generalization over long time

horizons. Additionally, black-box learning models lack explainability, making

them unsuitable for high-stakes industrial applications such as aerospace man-

ufacturing, where reliability is critical, particularly in high-mix, low-volume

(HMLV) settings. Conversely, purely analytical physics-based models, which

define dynamics using explicit mathematical formulations, offer advantages

in terms of data efficiency and interpretability. However, these models often

fall short when attempting to represent extreme non-linear behaviors, such as

those encountered in real-world screwdriving operations.

Recently, physics-informed machine learning approaches [204–210] have emerged

as a promising alternative, bridging the gap between purely data-driven and

fully analytical methods. These hybrid techniques integrate physical priors

with learning-based frameworks, allowing for better generalization with a rea-

sonable amount of training data while preserving a degree of explainability.

This makes them particularly well-suited for industrial automation and appli-

cations where insight into the underlying dynamics is necessary. In this work,

the proposed method takes inspiration from Sparse Identification of Nonlinear

Dynamical Systems (SINDy) [204, 210, 211], which has demonstrated supe-

rior performance compared to both purely data-driven and purely analytical

approaches.

Despite prior work on screwdriving process modeling using analytical methods

[169, 212] and recent advancements in physics-informed techniques applied to

industrial automation [6, 213, 214], no prior research has specifically exam-

ined screw-tip dynamics in the presence of compliance. The exploratory work

[4] was the first to explore this phenomenon, introducing the concept of the

screw-tip motion band and demonstrating preliminary insights into its be-

havior. However, that study was limited in scope, focusing on only a few

compliance configurations and simplified modeling assumptions. In this work,
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we build on that foundation by developing a more systematic framework for

analyzing screw-tip motion under compliance. The proposed approach ex-

tends previous findings by incorporating a broader range of compliance effects

and refining the modeling methodology. By integrating physics priors with

data-driven insights, we aim to provide a more generalizable and interpretable

understanding of screw-tip behavior, which could contribute to improved au-

tomation strategies in screwdriving applications.

8.4 System Overview

Figure 8.4: Hardware System Components of the mobile
manipulation-based screwdriving system.

8.4.1 Mobile-Manipulator-based Robotic Screwdriving System

The proposed system is designed specifically for high-mix, low-volume (HMLV)

settings where estimating the hole pose is inherently uncertain due to the ab-

sence of fixtures, as discussed in Section 8.1. The primary focus is on screw-

driving operations in assembly and maintenance/service contexts, which in-

volve variability in both part sizes and screw types. To successfully operate
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in such settings, the system must be mobile, capable of autonomously maneu-

vering across parts, and able to navigate constrained environments, such as

manufacturing floors or workshops.

Taking these requirements into account, we propose a system comprising a

7-DOF manipulator mounted on a holonomic-drive mobile base (Refer Fig.

8.4). The manipulator is a KUKA LBR iiwa, equipped with joint-torque sen-

sors that provide force feedback. This robot also features an inherent Carte-

sian impedance controller, ensuring safe interaction with parts by preventing

damage during contact with the surface for screwdriving operations.

For the screwdriving tool, we use an industrial-grade Kolver Series CA screw-

driver, which employs a magnetic holder to accommodate screws with various

head types. Screws are reliably supplied by a Kolver NFK UNI Screw Feeder,

which is mounted on the mobile base in a fixed location to enable efficient tool

pick-up by the robot during operations.

The system also incorporates two Intel RealSense cameras for perception. The

first camera is mounted on the mobile base (eye-to-hand configuration) to lo-

calize the part within the scene. The second camera is mounted on the robot’s

flange (eye-in-hand configuration) and provides precise hole pose estimation

during the operation. Both cameras provide RGB and depth images, enabling

the system to operate under uncertain and variable conditions.

Finally, the tool and the eye-in-hand camera are mounted on the robot’s flange

using a custom 3D-printed fixture, ensuring proper alignment and functional-

ity. This comprehensive setup enables the system to reliably perform screw-

driving operations across a wide variety of parts and screw types, even in the

presence of significant uncertainties (Refer Fig. 8.4).
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8.4.2 Software System Architecture

The software architecture of the proposed robotic screw-driving system is

structured around three core modules that enable successful operation, from

screw pick-up to insertion: (1) Planning and Control, (2) Perception and Sens-

ing, and (3) Failure and Fault Detection. Each module plays a crucial role in

providing information about the robot’s state, guiding the decision-making

process, and ensuring robust execution. The screwdriving process is modeled

as a finite state machine (FSM) that transitions through various states, start-

ing from screw pick-up and progressing to insertion (Refer Fig. 8.5). This FSM

framework enables precise handling of failures and faults, ensuring seamless

recovery and adaptability. The specific contributions of each module to the

FSM’s transitions, from the initial state to the goal state, are detailed below.

8.4.2.1 Planning and Control

The sequence of operations for the manipulator in the proposed robotic screw-

driving system involves three key stages: screw pick-up, transportation to a

pre-insertion configuration, and screw insertion. The manipulator begins by

picking up the screw from the screw feeder, then transports it to a pre-defined

position above the target hole, and finally approaches the hole to perform the

insertion. The initial steps, from screw pick-up to the pre-insertion position,

involve no variability in execution, allowing us to pre-compute the motion tra-

jectories and plans. For motion planning, we leverage MoveIt 2, which utilizes

OMPL-based planners [215]. Specifically, we use the Anytime Path Shortening

planner with constraints on end-effector orientation and joint velocity. Com-

munication with the robot is facilitated by the LBR-FRI ROS 2 stack [216],

enabling real-time control in KUKA’s fast robot interface mode. Planning

is done in Cartesian space, and the robot is commanded with timestamped
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trajectories via the Fast-Robot Interface that the LBR-FRI stack uses by com-

municating with the controller over the User Datagram Protocol (UDP).

Although this work primarily focuses on the screwdriving operation, we pro-

vide a detailed overview of the system’s end-to-end functionality to ensure

real-world applicability. A critical component of the process is ensuring re-

liable screw pick-up from the screw feeder. This is achieved by approaching

the screw head at low velocity while running the screwdriving tool in a coun-

terclockwise direction. Through experiments, we determined that executing

this deterministic motion for at least 5 seconds consistently achieves a 100%

success rate in screw pick-up.

For better precision, we use an ArUco marker strategically placed on the part

at a calibrated location, enabling accurate hole-pose estimation with minimal

uncertainty. Based on this estimate, we compute a motion plan to approach

the hole with the screw-driving tool activated. The screw-driving operation

itself is performed under Cartesian impedance control mode to minimize the

risk of part damage. We use KUKA’s built-in Cartesian impedance controller

for this purpose. The screwdriving tool, a Kolver Series CA tool, is controlled

via ROS Serial communication using an Arduino, allowing for commands to

adjust velocity, rotation direction, and start/stop functionality.

The base movement and control are performed via a custom stack developed

for the mobile base; all mobile base control-related information can be found

at https://github.com/RROS-Lab/. The entire software stack is built on ROS

2 [217], which serves as the middleware for seamless communication across the

system. This robust planning and control framework ensures the precise and

reliable execution of the screw-driving process.
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8.4.2.2 Perception and Sensing

Vision: The proposed system relies on two external RealSense cameras, which

provide aligned RGB and depth frames at a frame rate of approximately 30

fps. These cameras are essential for perception tasks, with distinct roles in the

system. The eye-to-hand camera (RealSense D415) is mounted externally and

is responsible for part localization (i.e., detecting ARUCO markers), allowing

the robot to identify and position itself relative to the target part. The in-

hand (or eye-in-hand) camera (RealSense D405), mounted on the robot’s end-

effector, plays a crucial role in generating time-series data that captures the

dynamics of the screw tip as it interacts with the surface. Both cameras stream

their RGB and depth data over ROS 2 topics, facilitated by the RealSense2

ROS package, ensuring smooth integration into the robotic system.

Robot Proprioception: The KUKA LBR iiwa 14 R820 robot enhances

perception through its joint-torque sensors, which provide rich proprioceptive

feedback. Using the KUKA API, the robot reports estimated Cartesian forces

at the end-effector. Additionally, the robot provides the precise position of its

end-effector relative to the base, enabling accurate tracking of its movements.

This proprioceptive data is available at a frequency of approximately 500 Hz,

offering high-resolution sensory feedback. The LBR-FRI ROS 2 stack is used

to retrieve and integrate this information into the system, ensuring reliable

and real-time communication.

8.4.3 System Operation

In addition to the software and planning components discussed in previous

sections, our system comprises two key modules: (1) the Screw-Tip Dynamics

Model and (2) the Defect Detection Model. Each module plays a crucial role

in process planning. Our system can be viewed as a finite-state machine (Refer
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Figure 8.5: We demonstrate how our dynamics model and defect detection
module aid in decision-making for our system. Here we depict the entire
process flow from the start (screw pick-up) till the end (insertion) for our
system. The Numbered Blocks at the top are nominal operation modes. At
every stage, the defect detection module evaluates if a failure has occurred
or not. If failure occurs due to time elapse (Input 4), then a reattempt
strategy is triggered, or else we call for human help.
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Fig. 8.5), where high-level decision-making is required to perform screwdriving

efficiently while minimizing failures.

Currently, when a defect is detected, an alert is triggered, prompting human

intervention for failure recovery before the system resumes nominal operation.

However, in an HMLV scenario, uncertainty in hole pose estimation can cause

the screw tip to keep moving in a motion band described in Section. 8.2

without successfully latching onto the hole. To handle such contingencies, our

dynamics model can be leveraged to compute an upper time bound (Tinsert

in Fig. 8.5) for remaining in this state. If the screw tip does not engage

within this threshold, the system can autonomously reattempt screwdriving by

retracting and repositioning rather than relying solely on external intervention.

We demonstrate how every piece of our system interacts to enable this in Fig.

8.5.

By integrating the screw-tip dynamics model into our system design, we can

fine-tune state transitions within our finite-state machine. Specifically, this

enables us to define time thresholds for transitioning from an unsuccessful

insertion attempt to a reattempt strategy, reducing unnecessary dwell time in

failure-prone states. Sections 8.5 and 8.7.3 further elaborate on these concepts

and provide quantitative analyses of their impact.

8.5 Physics-Informed Discovery of Screw Tip Dynamics

As discussed in Section 8.2, the interplay between passive and active compli-

ance results in the screw-tip executing motion within a bounded region. If

the hole lies within this band of motion, the operation remains feasible even

when the screw tip initially makes contact away from the hole. While this

motion is inherently non-linear, it is fundamentally governed by the physics of

compliance. Our goal is to characterize this non-linear behavior by learning
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Figure 8.6: Screw-tip Dynamics Model that takes the state information,
impedance control parameters, and robot orientation as input. The model
predicts the first-order time derivatives, i.e., the velocity of the screw-tip in
Cartesian space, in the robot’s base frame of reference. We achieve this by
first converting the screw-tip coordinates from image space to camera
frame and then to base frame.
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a dynamics model of the screw tip. Such a model would elucidate the effects

of compliance on the screw-tip’s trajectory and provide actionable insights for

system design.

The primary motivation for learning such a model lies in its utility for process

planning, particularly in determining when to abandon an operation. For

instance, consider a scenario where the screw-tip has made contact with the

surface and is following the motion described in Section 8.2. Suppose we can

accurately predict the screw-tip’s position over time. In that case, we can

probabilistically estimate the time required for the screw to fall into the hole’s

attractor basin (Refer Section. 8.7.3). This estimated time can then serve as

a reference threshold, guiding the system on when to reset and reattempt the

operation if successful insertion has not occurred within the expected duration,

thus underscoring the importance of such a dynamics model.

There are multiple approaches to learning this dynamics model for given com-

pliance parameters. A fully data-driven approach, such as employing neural

operators or networks, is one option. However, these methods often lack ex-

plainability, require extensive time-series data for training, and struggle to

generalize to new scenarios or varying operating conditions [218]. In applica-

tions with high-mix, low-volume (HMLV) constraints, where data availability

is limited, these shortcomings become significant barriers.

To address these challenges, we adopt the Sparse Identification of Nonlin-

ear Dynamics (SINDy) framework. SINDy directly identifies the governing

equations of screw-tip dynamics by leveraging physics-informed assumptions.

Specifically, we hypothesize a family of candidate functions to describe the

dynamics and use sparse regression techniques to learn their parameters. This

approach ensures explainability and requires minimal retraining, making it

174



well-suited for systems that must operate under uncertainty and adapt to

changes in operating parameters.

8.5.1 Model Definition

Preliminaries: In order to formally define the dynamics modeling problem,

let us initially define a set of parameters and variables. Let X ∈ R2 denote

the state of the screw tip. Let Ẋ denote the first-order time derivative of X.

We only consider screw-tip dynamics once the tip has made contact with the

surface of the panel on which screwdriving is to be performed. Hence, t = 0

signifies the time instant at which the rotating screw tip makes contact with

the surface and executes the motion band. At a given time t, the system is

excited by an external control input U ∈ R15. The objective of the dynamic

model is to learn a function Ẋ = f(X,U). We also define Θ that denotes a

family of candidate functions comprising polynomial and sinusoidal functions,

in our case, that potentially define the dynamics of the screw-tip.

SINDy for Screw-tip Dynamics: In our system (Refer Fig. 8.6), X is

defined by the [x, y] ∈ R2 cartesian position of the screw-tip with respect to

a fixed frame of reference Tbase, i.e., the robot’s base. We ignore z since the

screw-tip performs the described motion on a plane, i.e., the surface on which

screw-driving is performed. Consequently, Ẋ gets defined by the tuple [ẋ, ẏ].

The control inputs U are a function of the controller’s compliance parameters

and the robot’s state. Specifically, U is the robot’s end-effector orientation

Q ∈ R3 and the Cartesian impedance controller parameters K ∈ R6 and

C ∈ R6. Where K is the stiffness and C is the damping that decides the

controller gains. Now, to model f(X,U), we employ SINDy methodology,

such that for a given family of candidate functions Θ, our objective is to learn

parameters Ξ, such that the following can be satisfied.
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Ẋ = Θ(X,U)Ξ (8.1)

Here, X = [X1, . . . , Xm] ∈ Rm×n represents a collection of m time snap-

shots of the state variable X ∈ Rn, with Ẋ denoting the corresponding

time derivatives. In our case, we consider n = 2. The term Θ(X,U) =

[θ1(X,U), . . . , θp(X,U)] ∈ Rm×p defines a set of p candidate basis functions,

while Ξ ∈ Rp×n represents the coefficient matrix corresponding to these func-

tions in Θ. The primary goal of the model is to estimate the coefficient

parameters in Ξ.

In order to learn these coefficients, we optimize for the loss function as per Eq.

8.2.

Ldynamic = λ1||Ẋ −Θ(X,U) Ξ||22 + λ2||Ξ||22 (8.2)

Here, λ1 and λ2 are hyperparameters that control different aspects of the

model. The λ1 term corresponds to the Mean Squared Error (L2-loss) function,

which drives the minimization of the error between predicted and observed

values. Meanwhile, λ2 enforces regularization, helping to prevent overfitting.

Additionally, we incorporate sequential thresholding, where for every ith train-

ing step, we set coefficients below a predefined threshold ϵ to zero. This en-

courages sparsity in the model, ensuring that only the most significant terms

with dominant coefficients are retained. For Θ, we construct a feature library

consisting of polynomial terms up to the third order, along with sinusoidal

functions.
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Figure 8.7: The four different failure modes studied in this work. We can
observe that for each of them, the wrench signals have distinctive
characteristics.
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8.6 Failure Mode Detection

Defect detection is a critical component of any industrial robotic system, en-

suring resilience and the ability to handle various failure modes effectively. In

a robotic task execution framework, the system relies on a set of controllers to

perform motions, receiving post-condition feedback to determine task success.

A failure mode is identified when these post-conditions are not met, indicating

an issue in execution.

In the context of screwdriving, failure detection follows a similar principle. A

successful insertion can be defined based on specific post-condition metrics,

such as wrench signals and the robot’s final position upon task completion.

Through analysis, we observe that the primary failure modes in screwdriving

can be characterized as functions of the external wrench (Refer Fig. 8.7).

Throughout the screwdriving process, from screw pickup to final insertion,

multiple failure modes may arise. To ensure smooth operation and enable

efficient failure recovery, we develop a defect detection system capable of iden-

tifying five key failure modes:

• Stalling of Operation - Occurs due to equipment malfunction, particularly

when the system fails to execute a controller properly.

• Detached Screw - Happens if the screw detaches from the tool-head during

the process

• Thread Jamming - Arises when excessive friction builds up due to im-

proper thread engagement, potentially leading to damage or deformation,

thereby preventing further insertion.

• Misaligned Screw - A failure mode caused by improper screw pickup,

leading to unsuccessful insertion as the screw-driving tool loses control
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over the screw’s motion. This is also the main cause of cross-threading

[166]

• Timeout Failure: This failure occurs when the screw tip continues mov-

ing within the motion band without reaching the hole’s attractor basin,

preventing successful insertion. The failure is triggered when the elapsed

time surpasses a predefined threshold.

The defect detection system operates in parallel with the execution process,

facilitating real-time intervention by activating corrective controllers or alert-

ing human operators when automated recovery is not feasible. This framework

enhances the reliability and adaptability of robotic screwdriving operations,

minimizing downtime and ensuring robust failure mitigation strategies.

In prior work [4], a deep learning-based multi-modal failure detection frame-

work was explored. While such methods can be highly effective, they are often

sensitive to environmental variations (e.g., lighting conditions, component col-

ors) and require large amounts of data, which can be difficult to collect in high-

mix, low-volume (HMLV) manufacturing settings. Furthermore, vision-based

deep learning methods can introduce deployment challenges, particularly in

dynamic industrial environments. To address these limitations, we need a

more scalable and generalizable approach that relies exclusively on force sig-

natures. Therefore, we did not pursue deep learning-based methods in this

work.

In [199], the authors demonstrated the robustness of a decision tree-based

methodology compared to other approaches, such as Long Short-Term Memory

(LSTM) networks, Support Vector Machines (SVMs), and Logistic Regression

(LR) for screwdriving applications. Their results highlight the strength of

decision trees in failure detection for screwdriving, making them an attractive

choice for industrial applications. Our observations and experiments align with

179



(a) Part A with M4 Screw and 30 Deg Part Orientation

(b) Part B with M6 screw and 90 Deg Part Orientation i.e, part laid flat horizontally

Figure 8.8: Variation in Wrench Signals Across Different Screw Types and
Orientations. This figure illustrates how wrench signals vary when
performing screwdriving operations on different parts, screw types, and
orientations. Note that these wrench signals were recorded for a successful
screwdriving insertion for the fairness of comparison. Notably, while the fz
signal exhibits similar overall characteristics, we observe shifts in sign,
gradient, and distinct variations in other force and torque signals during
both the insertion and tightening phases. These variations highlight the
challenges of directly applying prior methods and underscore the need for a
more adaptable approach—as proposed in our work-to ensure robustness in
high-mix, low-volume (HMLV) manufacturing.
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these findings, reinforcing the efficacy of decision trees in structured failure

mode classification based on sensor patterns. Consequently, we also adopt a

decision tree-based classifier, leveraging its advantages in terms of robustness,

interpretability, and ease of deployment, which are critical factors in real-world

industrial automation where adaptability and reliability are critical. Of the

five failure modes mentioned, the decision tree is used to detect the first four,

while the dynamics model provides the necessary information to trigger the

fifth mode, as previously discussed.

The approach presented in [199] explored an instance of a problem with the

following attributes: (1) a single screw type, (2) screwdriving is performed in a

gravity-assisted orientation, and (3) Compliance is in the tool (Passive), with

no active compliance strategies in the robotic system. Our work generalizes

the previous work. Our experiments (Refer Fig. 8.8) indicate that even sub-

tle differences from variations in screw geometries, torque requirements, and

insertion orientations can introduce significant variabilities in sensor readings.

These variations make it challenging to directly use the results reported in

[199]. Moreover, a fundamental constraint in HMLV settings is the inabil-

ity to collect large failure datasets due to the diverse and evolving nature of

tasks. To overcome this, we propose a novel data augmentation strategy that

systematically enhances the collected data, ensuring that the decision tree

is trained with appropriate inductive biases. This augmentation enables our

methodology to generalize across different screwdriving conditions, making it

significantly more deployable in HMLV automation.

8.6.1 Data Augmentation and Pre-processing

To enable real-time defect detection, we temporally segment sensor signals,

creating a structured state representation with a fixed time interval, ∆T ,
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which can be adjusted based on operational requirements. We assign state

labels within each interval using self-supervised signal analysis, ensuring a

well-defined mapping between sensor readings and failure modes.

For model training, we initially process wrench data collected from the robot’s

joint torque sensors during experiments. Each data segment is labeled accord-

ing to its corresponding failure mode. However, given the limited availability

of experimental data, augmentation is necessary to enhance model robustness

against variations and sensor noise. Additionally, raw wrench signals often ex-

hibit inherent noise and fluctuations within a given sampling window, which

can affect classification accuracy. To address these challenges, we apply a series

of pre-processing operations to extract informative features while making the

model resilient to noise. Specifically, for each sampling window, we perform

the following:

• Gaussian Noise Injection: We introduce noise sampled from N (µ, σ) to

simulate sensor variations.

• Low-Pass Filtering: The noisy signal is passed through a low-pass filter to

retain essential low-frequency components while reducing high-frequency

fluctuations.

• Periodic Disturbance Modeling: We incorporate sinusoidal perturbations

to account for periodic disturbances commonly observed in real-world

settings.

• Time Shifting and Amplitude Scaling: Time shifting is applied to han-

dle phase variations, while amplitude scaling ensures robustness against

intensity fluctuations.

By leveraging these augmentation techniques, we generate high-quality syn-

thetic variations of real-world data, enabling the decision tree-based classifier

to generalize effectively across different operating conditions. This ensures a

182



reliable and scalable defect detection system suitable for industrial deploy-

ment.

8.6.2 Feature Extraction

Following the data augmentation process described in Section 8.6.1, we im-

plement a multi-stage feature extraction methodology to handle the non-

stationary characteristics of wrench signals. The proposed pipeline computes

nine temporal and statistical features through sliding window analysis with

window size t.

Feature Definitions For a signal window X = {x1, x2, ..., xN} with N =

t · fs samples (fs = sampling frequency): (1) Mean:µ = 1
N

∑N
i=1 xi, (2) Std.

dev.: σ =
√

1
N

∑N
i=1(xi − µ)2, (3) RMS: xRMS =

√
1
N

∑N
i=1 x

2
i , (4) Skewness:

γ1 = E[(X−µ)3]
σ3 , (5) Kurtosis: γ2 = E[(X−µ)4]

σ4 − 3, (6) Zero Cross Rate (ZCR):

1
N−1

∑N−1
i=1 I(xixi+1 < 0), (7) Energy: E =

∑N
i=1 |xi|2, (8) Entropy: H(X) =

−
∑K

k=1 pk log2 pk, (9) Correlation: ρxy =
∑N

i=1(xi−µx)(yi−µy)
σxσy

Each of these features was selected through rigorous analysis of the wrench

data and validated using Principal Component Analysis (PCA). The model’s

performance benefits significantly from this feature set because they capture

complementary aspects of the wrench signal characteristics: temporal statistics

(µ, σ, xmax, xmin) quantify the signal’s amplitude variations, higher-order mo-

ments (γ1, γ2) detect subtle changes in signal distribution, while information-

theoretic measures (H(X), ZCR) effectively identify transient anomalies and

mode transitions. The pairwise correlation coefficients further enhance fail-

ure mode discrimination by capturing the coupling between different wrench

components. Through PCA, we verified that these features exhibit minimal

redundancy while maintaining high explanatory power. The window size t was

optimized through cross-validation on the dataset, with t = 150 ms providing
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an optimal trade-off between stationarity assumptions and detection latency

requirements.

8.6.3 Decision Tree-based Defect Detection

The features described in Section. 8.6.2 provides a state signature for detecting

the defects. The focus in this work is real-world deployment and scalability.

Considering the HMLV nature of the task and challenges pertaining to real-

world data, we choose the decision tree-based modeling framework that is well-

suited for this task due to its ability to handle non-linear decision boundaries,

its robustness to small dataset sizes and its interpretability, which allows for

insight into the key factors contributing to each failure mode.

The classifier takes as input the set of features finput computed over a fixed

sampling window ∆T , which encapsulates relevant statistical and temporal

characteristics of the wrench signals and robot state. Given these feature

representations, the decision tree learns a hierarchical set of rules that partition

the feature space into distinct failure mode classes. This structured decision-

making approach enables the classifier to generalize effectively to unseen data

while maintaining computational efficiency for real-time deployment.

To train the decision tree, we use labeled data collected from experimental

trials where each instance corresponds to a specific failure mode. The training

process involves feature selection, as outlined in the previous section. Subse-

quently, the tree is constructed by iteratively splitting the feature space based

on decision rules that maximize information gain using the Gini impurity cri-

teria. In order to prevent overfitting and enhance generalization, we apply

pre-pruning (depth constraints) and post-pruning techniques. The decision

tree model is integrated into the robotic system to perform failure mode clas-

sification in real-time. During execution, the system continuously monitors
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the wrench signals and robot state, computing features over each sampling

window ∆T . The trained decision tree then classifies the failure mode and

triggers the appropriate response. The system invokes predefined contingency

controllers if the detected failure mode is recoverable. However, if failure re-

covery is infeasible, an alert is generated for operator intervention.

8.7 Experiments and Results

The experiments aim to evaluate the effectiveness of the proposed system and

validate the following key hypotheses:

• Real-World Suitability and Reliability: Does our system perform

reliably across a diverse set of parts and screw types in real-world appli-

cations?

• Generalization of the Physics-Informed Dynamics Model: Can

our model accurately predict screw-tip motion across different scenarios?

• Prediction of Completion Time: Can the dynamics model effectively

estimate the time required for task completion?

• Defect Detection Reliability: Does our failure detection method ac-

curately classify and identify different failure modes?

8.7.1 Experimental Setup and Test Parts

Experimental Setup: As discussed in Section 8.1, the primary objective

of our system is to operate in high-mix, low-volume (HMLV) manufactur-

ing settings. In such environments, fastening operations must accommodate

varied part orientations and multiple screw types, requiring a flexible and re-

liable screwdriving system. To evaluate our system’s capability under these

conditions, we design an experimental setup as illustrated in Fig. 8.9. The
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Figure 8.9: The experimental setup serves as a testbed for data collection
for our dynamics model, failure detection model, and for performing
screw-driving trials. (a) Depict the panel at an orientation that can be
adjusted by two actuators on each end, (b) Depicts the in-hand camera’s
RGB images used to detect the colored screw-tip, and (c) Shows our trials
for failure-mode detection, with all the parts mounted on the panel at an
orientation

setup consists of an actuated mounting panel, where test parts can be se-

curely attached. The panel can be precisely oriented using two linear actua-

tors, enabling us to simulate real-world scenarios where screwdriving must be

performed in non-gravity-assisted configurations. By controlling these actua-

tors, we can systematically vary the panel’s orientation to assess the system’s

robustness across different inclinations.

Beyond serving as a testbed for screwdriving experiments, the proposed setup

also facilitates data collection for modeling screw-tip dynamics. By vary-

ing part orientations, we gather diverse motion trajectories, enabling us to

build and validate our physics-informed dynamics model. This setup ensures

a controlled yet adaptable environment for evaluating our system’s reliability,

scalability, and generalization across different fastening conditions.

Test Parts and Screw Types: To evaluate the robustness of our system

across different fastening scenarios, we conduct experiments using three screw

types, each varying in width and thread size: (1) M4 × 0.7 mm, (2) M5 × 0.8

mm and (3)M6 × 1.0 mm. All selected screws are pan head with a 20 mm

length. The choice of these screws is based on their compatibility with our
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Figure 8.10: Left: The three Screw Types (M4, M5, and M6) used for the
trials and Right: The ten test parts selected for performing screwdriving
trials. Each of them has a different geometrical complexity, size, and shape,
and they are representative of different industrial settings (E.g., Electrical
Components, Automobile Parts, Refrigerator Parts, etc.). Furthermore
each of them have different screw types and at different orientations to
simulate a realistic HMLV scenario
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screwdriving tool and their prevalence in HMLV manufacturing environments

[219].

For part selection, we focus on representative industrial components that re-

flect the diversity of products typically encountered in HMLV settings. The

test parts, illustrated in Fig. 8.10, exhibit variations in: (1) Geometrical com-

plexity - influencing the system’s ability to reach and perform screwdriving

operations. (2) Size categories - classified into small, medium, and large to

test scalability. (3) Threaded insert locations - affecting alignment and inser-

tion precision. All parts used in our experiments are scaled 3D-printed replicas

of real-world industrial components, allowing us to systematically test differ-

ent fastening conditions while maintaining controlled experimental variables.

This selection ensures a comprehensive evaluation of our system’s ability to

handle diverse part geometries, sizes, and insertion challenges.

8.7.2 Dynamics Model Evaluation

Data Collection: The dynamics model proposed in Section 8.5.1 character-

izes screw-tip motion as a function of compliance parameters. Therefore, our

goal during data collection is to obtain timestamped screw-tip motion data in

a fixed reference frame for different screw types and impedance control param-

eters, defined as: (1) Stiffness: K = [kx, ky, kz, kα, kβ, kγ ] and (2) Damping:

C = [cx, cy, cz, cα, cβ, cγ ]. Additionally, to ensure that our model generalizes

well to changes in part orientation, we collect motion data at three different

part orientations of [30o, 60o, 90o].

Tracking the high-velocity motion of the screw tip during data collection is a

key challenge. To address this, we use a color-based marker on the screw-tip,

which is tracked using an in-hand RealSense D405 camera. This camera is well-

suited for close proximity ( 0.01-0.02 m) tracking with < 1 mm precision. The
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Figure 8.11: The Predicted vs Ground truth for screw-tip motion. Here the
predictions are for all three screw types used in our study. The model
predicts velocity Ẋ. However, we also compute the cartesian trajectory of
the screw tip given an initial state. We can see all our predictions are
within the green zone, which signifies a 1 mm deviation for the screw tip
from the reference trajectory. Also, if we observe closely, our predicted
characteristics follow the ground truth characteristics of the screw-tip
motion. This underscores the robustness of SINDy in modeling such highly
nonlinear dynamics.

camera provides time-synchronized RGB and depth frames at 30 FPS, allowing

us to reconstruct the screw-tip trajectory with high accuracy. This data is then

post-processed to detect the screw-tip with a color-based filtering technique

(Refer Fig. 8.9). Specifically, we employ a simple HSV (hue-saturation-value)

based filter in OpenCV [220] to get the colored marker’s mask. Once we

have the mask, we approximate the centroid of this mask, which gives us

the position of the tip in the image frame. Since the depth frame is aligned,

we acquire the Z value of the screw-tip. We then deproject the identified

pixels into Cartesian space using the camera’s intrinsic parameters, allowing

us to accurately determine the (x, y) position of the screw-tip in the camera

frame. This streamlined data collection process enables efficient large-scale

data acquisition across all three screw types. It is important to note that

the color marking on the screw-tip is only required during the data collection

phase for building the dynamics model. During execution, no visual markers
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are necessary since the learned dynamics model can reliably predict the screw-

tip position in real time.

Our initial experiments revealed that fine-grained variations in impedance pa-

rameters K and C had minimal impact on screw-tip motion. To simplify the

analysis while preserving essential dynamics, we discretized impedance val-

ues into three categories: High (Ktrans = [2500Nm],Krot = [250Nm/rad]),

Medium (Ktrans = [1500Nm],Krot = [150Nm/rad]), and Low (Ktrans =

[500Nm],Krot = [50Nm/rad]). For each screw type and part orientation,

we conducted approximately 50 trials, with each trial lasting at least 20 sec-

onds. Given our system’s 30 FPS ∗ recording rate, each trial generated around

600 frames (30 FPS × 20 sec). In total, we collected 30,000 samples, which

were used for model training and evaluation. The dataset was split 80:10:10

into training, validation, and testing sets. We employ appropriate subset sam-

pling to ensure that data points from different screw types and orientations

are uniformly represented across each of the dataset splits.

Model Performance: We train our model for 100 epochs using the loss

function defined in Eq. 8.2. Training is conducted on an NVIDIA GeForce

RTX 3060 GPU with an Intel Core i7 processor and 32GB of memory. We

employ the Adam optimizer with a batch size of 32 to ensure stable conver-

gence. The SINDy framework is implemented in PyTorch (code available at:

https://github.com/l0g1c-80m8/screwdriving-model-sindy-rcim). Fig.

8.11 presents our model’s performance in predicting screw-tip velocity, eval-

uated on a held-out test set of 3000 samples. The predicted velocities are

integrated to obtain the screw-tip position, which closely follows the ground

truth reference trajectory. Notably, our model maintains a prediction error

within 1 mm of the reference position, as highlighted by the green region in

∗Note: 30 fps is due to depth data
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Fig. 8.11, demonstrating its accuracy and reliability in capturing screw-tip

dynamics.

Model’s Dominant Terms: SINDy enforces model sparsity through sequen-

tial thresholding, where terms with coefficients below a predefined threshold

(10−4 in our case) are set to zero during training. This process ensures that

only a few dominant terms remain by the end of training, making the model

more interpretable and computationally efficient. In our case, the most signif-

icant terms were third-order polynomial terms, followed by sinusoidal compo-

nents, second-order polynomial terms, and a few constant terms. This enforced

sparsity enhances interpretability and improves computational efficiency, mak-

ing our model well-suited for real-time applications where high-frequency pre-

dictions are critical.

Baseline Comparison: To highlight the suitability of the SINDy model in

capturing the nonlinear dynamics of the screw tip, we benchmark its per-

formance against fully data-driven end-to-end models, such as Multi-Layer

Perceptrons (MLPs) and Long Short-Term Memory Networks (LSTMs) that

have been a popular choice for modeling system dynamics.

Model Mean MSE (m) Max MSE (m) Std. Dev.
Ours 0.00035 0.0009 0.00025
LSTM 0.0653 0.1305 0.038
MLP 0.07 0.13 0.04

Table 8.1: Comparison of SINDy model with LSTM and MLP for
predicting screw-tip dynamics. These numbers are reported on a rollout of
the model for a time horizon of 5 seconds on our held-out testing
trajectories. What we observe is that even though the loss for LSTMs and
NNs is low, the divergence is significant, leading to poor predictions beyond
a couple of timesteps.

As shown by the error values in Table 8.1, SINDy significantly outperforms

MLP and LSTMs in predicting the screw-tip’s position. These findings are

consistent with previous results reported by the authors of the SINDy method
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[204]. Additionally, we observe that for both MLP and LSTM, the loss drops

sharply early in the training cycle, suggesting that these models quickly con-

verge to suboptimal local minima. While their overall loss values appear low,

they fail to generate accurate predictions beyond a few timesteps, indicating

poor long-term generalization. This highlights the superior accuracy of SINDy

in modeling nonlinear screw-tip dynamics and also its ability to provide inter-

pretability, as it explicitly identifies the fundamental governing equations of

the system.

8.7.3 Predicting Time to Completion with Dynamics Model

Figure 8.12: The Predicted vs Ground truth time to insertion for a given
offset of the screw-tip. This data is collected during our experiments when
we keep the screwdriving tool rpm at a fixed value of 600 rpm

The screw-tip dynamics model we developed provides insights into the level

of uncertainty a designed system can tolerate. For example, given a set of

screw types, we can estimate the maximum hole pose offset a system can

handle. Additionally, this model allows us to approximate the time required

for the screw tip to reach the hole’s attractor basin. Fig. 8.12 illustrates
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these computations by reporting the average time for the screw tip to fall into

the hole’s attractor basin for various hole pose offsets. The mean insertion

time is computed across all trials for each offset. To determine this time from

experimental data, we analyze the wrench data, specifically monitoring the

fz force component and the z value of the robot’s end-effector. Once initial

contact is made, an increase in fz beyond a predefined threshold serves as

an indicator of successful engagement between the screw and the hole. Only

successful trials are considered in this analysis.

Using our dynamics model, we further predict the insertion time by randomly

sampling hole poses within an offset range η ∈ [0, 4] mm and computing the

average time it takes for the predicted screw-tip trajectory to pass through the

hole’s center. For a given screw tip diameter, we define successful insertion

when the tip overlaps with at least 90% of the hole’s area. This threshold en-

sures that the screw tip is sufficiently aligned with the hole’s attractor basin,

allowing it to fall in and engage reliably. As shown in Figure 8.12, our pre-

dictions align well with the ground truth insertion times. Notably, our model

exhibits a conservative bias, consistently overestimating the insertion time.

This insertion time acts as a benchmark for defining Tinsert, the threshold

beyond which a reattempt is initiated to maintain efficient operation. The

average time required to complete a screwdriving operation once the screw tip

makes contact with the near plate i.e., the part surface is 5 seconds across all

our trials.

8.7.4 Failure Detection Results

The first four failure modes out of the five discussed in Section 8.6 exhibit

distinct state signatures based on wrench data. We collect data using the same

testbed described in Section 8.7.1 to train our decision tree model for failure
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detection. However, generating failure cases presents a significant challenge,

as some failure modes-such as screw misalignment-occur infrequently under

nominal operating conditions. This scarcity of failure data makes the data

collection process inherently complex. To address this challenge, we leverage

the data augmentation method outlined in Section 8.6.1, enabling us to enrich

our dataset with realistic failure cases.

To systematically capture failure cases, we conduct 45 trials by intentionally

introducing positional offsets from the hole and varying the approach orien-

tation during screwdriving. This controlled experimental design ensures that

our training dataset encompasses a diverse range of failure modes. In these

45 trials, we also include successful screwdriving trials to help the failure de-

tection model learn normal operating conditions and distinguish failures from

nominal behavior. Importantly, all training data is collected exclusively on

the flat panel with threaded inserts described in Section 8.7.1.

Figure 8.13: Left: The confusion matrix for our validation dataset collected
on a flat panel with an F1-score of 0.94. Right: We perform classification
on testing data collected on our 10 different parts, where our model
accurately classifies all modes of failure as shown in the figure

To evaluate the robustness and generalization of our decision tree model, we

conducted 50 screw-driving trials using 10 different 3D-printed parts, each

equipped with appropriate threaded inserts. It is crucial to highlight that while
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the training data is collected on the flat panel with threaded inserts (Refer Fig.

8.9), all testing data is collected exclusively on these 3D-printed parts, allowing

us to assess the model’s ability to generalize to unseen geometries and assembly

conditions. The distribution of failure modes across the 45 training trials (On

flat Panel) and 50 testing trials (On 10 Parts) is summarized in Table 8.2.

Table 8.2: Distribution of Trials for Training and Testing. Training data is
collected on the flat panel with threaded inserts while testing is performed
by executing a screwdriving operation on 10 real-world parts.

Category Training Trials Testing Trials
Successful Completion (Nominal) 25 40
Operation-Stalled 5 4
Misaligned-Screw-in-Tool-Holder 5 1
Screw-Detached-Without-Successful-Completion 5 3
Thread-Jamming 5 2
Total 45 50

Table 8.3: Test Accuracy and Classification Report. Classes 0,1,2,3,4 are
the same as in the order they appear in the columns of Fig. 8.13

Class Precision Recall F1-Score Support

0 1.00 1.00 1.00 2
1 1.00 1.00 1.00 2
2 1.00 1.00 1.00 1
3 1.00 1.00 1.00 40
4 1.00 1.00 1.00 5

Accuracy 1.00 50
Macro Avg 1.00 1.00 1.00 50
Weighted Avg 1.00 1.00 1.00 50

We train our decision tree model using data from 45 training trials, along with

augmented data generated through the methodology outlined in Section 8.6.

Each data point undergoes five augmentation steps, resulting in an additional

225 training samples to enhance model robustness. We implement the decision

tree using scikit-learn [221], employing Gini impurity as the splitting criterion.

The dataset is split 80:20 for training and validation, with all augmented data

used exclusively for training.
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The confusion matrix in Fig. 8.13 demonstrates that our model achieves per-

fect recall (1.0) for failure mode detection, ensuring that all defects are cor-

rectly classified. In validation, we observe an F1-score of 0.94, with nominal

operation modes being the primary source of misclassification. These misclas-

sifications typically occur in cases where the screw was near a failure mode

but ultimately succeeded due to the robot’s active compliance compensating

for the offset. For qualitative insights, we provide videos illustrating such

scenarios at: https://sites.google.com/usc.edu/physicsinformedscrewdriving.

Figure 8.14: The learned decision tree for the five classes (modes) of
operation. This figure is auto-generated using sci-kit learn graphviz
functionality and depicts how the decision tree is performing the splits.

Our model’s robustness is evident in the testing results, where it successfully

identified all failure cases, including nominal operation modes, without any

misclassifications (Refer Table 8.3). These trials were conducted across the

10 distinct parts shown in Fig. 8.9, simulating a realistic HMLV setting.

This scenario is representative of an HMLV setting, underscoring our failure

detection method’s applicability to such cases. The corresponding learned

decision tree model is visualized in Fig. 8.14.
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Effect of Data Augmentation: To evaluate the impact of our augmen-

tation strategy, we conduct an ablation study where no data augmentation is

applied. Without augmentation, the validation F1-score drops significantly to

0.70, with a corresponding recall of 0.70, indicating a reduced ability to clas-

sify failure cases correctly. On the test set, the F1-score declines to 0.94, with

recall decreasing to 0.92. These results underscore the importance of augmen-

tation, demonstrating that it enhances the model’s robustness by improving

its ability to distinguish failure modes more effectively.

8.8 Summary

This chapter investigated how compliance—both passive in the tool and active

in robot control—can be harnessed to achieve robust screwdriving under real-

world uncertainties, particularly in high-mix, low-volume (HMLV) settings

where expensive fixturing is infeasible. The key contributions and findings are

as follows:

• Autonomous compliant screwdriving system: A mobile robotic cell was

developed that combines a passively compliant rotary tool with Cartesian

impedance control, along with vision and force sensing, to perform au-

tonomous screwdriving on varied parts without relying on rigid fixtures.

• Physics-informed dynamics modeling via SINDy: Sparse Identification of

Nonlinear Dynamics (SINDy) was used to learn an interpretable, data-

efficient model of the screw-tip behavior as a function of compliance pa-

rameters and robot orientation. This model outperformed end-to-end

neural network approaches and enabled accurate predictions of insertion

dynamics across a range of hole pose offsets.

• Data-driven process planning: By leveraging the SINDy model to esti-

mate time-to-insertion, the system can automatically trigger reattempts
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or escalate for intervention when a screw fails to insert within an informed

time threshold—thereby closing the loop between prediction and action.

• Robust decision-tree-based failure detection: A decision-tree framework

was introduced to classify five distinct failure modes—four force-based

anomalies plus a time-elapsed failure, achieving perfect precision and re-

call on test data. A targeted data-augmentation strategy further boosted

detection performance.

• Extensive real-world validation: Trials on ten industrial parts and three

screw sizes (M4, M5, M6) demonstrated 100% success under hole pose

uncertainties up to ±4 mm/±3o, with average insertion times around five

seconds. These results confirm the system’s adaptability and reliability

in practical HMLV environments.

Together, these results underscore the critical role of compliance modeling

and physics-informed learning in enabling reliable robotic manipulation un-

der uncertainty. By integrating dynamic simulation, interpretable modeling,

and real-time feedback, the framework advances the state of the art in au-

tonomous screwdriving and offers a blueprint for other precision tasks involv-

ing deformable or compliant elements. This chapter’s insights on compliance,

physics-informed modeling, and failure resilience feed directly into the overar-

ching dissertation goal of building intelligent, explainable, and robust robotic

systems for deformable/compliant object manipulation.
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Chapter 9

Bi-manual Manipulation for Shell-like Deformable

Objects

9.1 Introduction

Deformable object manipulation has traditionally focused on 1D structures

like ropes and cables, or 2D structures like cloths and sheets, as discussed

in previous chapters. While these settings have offered essential insights into

planning and control for deformable materials, the evolving landscape of logis-

tics, e-commerce, and small-batch manufacturing is introducing new classes of

deformable objects that demand a different perspective. In particular, shell-

like deformable packages—such as polybags containing internal objects—are

becoming increasingly prevalent. These packages present unique challenges:

unlike simple sheets or ropes, they consist of two thin surfaces enclosing a

freely moving internal mass, producing complex, coupled deformation behav-

iors. Depending on the properties of the external material and the contained

object, these packages can exhibit unpredictable bending, sagging, and folding

patterns during handling. Despite their growing industrial importance, such

shell-like deformable objects remain understudied in the robotics community,

creating a critical gap between current research and real-world application

needs.
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Figure 9.1: (a)The deformable packages studied in this work. (b)The
proposed bimanual cell. The in-bin robot stays inside the bin during the
packing process, while the pick-place robot transports and places packages
inside the bin.

One domain where these challenges manifest acutely is bin-packing in ware-

house logistics. Efficient bin-packing is essential for optimizing space, minimiz-

ing costs, and meeting the growing demands of rapid fulfillment. While rigid

packages have been extensively studied with conventional packing strategies

[222], deformable packages introduce a different class of problems: (1) Their

deformation depends heavily on internal contents, making shape prediction

unreliable, (2) Visual inspection alone cannot fully infer their physical prop-

erties, and (3) Traditional packing methods, which assume rigid or uniformly

stackable items [223], often fail when applied to such deformable items.

Fig. 9.1 illustrates the class of deformable packages addressed in this chapter.

Unlike rigid boxes, these packages demand adaptive handling strategies that

can stabilize and manipulate their pliable structure during packing. In pre-

liminary investigations, we observed that humans naturally employ bi-manual

strategies when packing such deformable packages: one hand stabilizes the
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partially packed contents (providing local structure and control), while the

other places new items (exploiting open space and compressibility). Bimanual

manipulation becomes particularly important when dealing with deformable

objects for two reasons: (1) Stabilization and active control are needed si-

multaneously to prevent undesirable deformations during placement, and (2)

Coordinated force application across two points allows for gentle correction of

object shapes without causing damage.

However, enabling bimanual robotic systems introduces significant new chal-

lenges. Coordinating two arms demands precise synchronization, particularly

under conditions of uncertainty where object behavior may be unpredictable.

Beyond synchronization, reasoning about the coupled effects of grasping and

sweeping actions becomes complex, as internal and external deformations of

the object are deeply interdependent. Effective planning must therefore navi-

gate a delicate balance—optimizing task objectives, such as maximizing pack-

ing density, while simultaneously respecting physical constraints, such as pre-

venting package rupture or minimizing excessive force application.

Drawing inspiration from these human strategies, this chapter presents a bi-

manual robotic system that mirrors this dual-role principle. One manipulator

is responsible for stabilizing and adjusting package positions within the bin,

while the second manipulator performs suction-based pick-and-place opera-

tions for incoming packages. Unlike rigid bin-packing tasks, where simple

heuristics are often sufficient, packing deformable objects demands a more

adaptive and responsive approach. Heuristic-driven strategies frequently fail

in these settings, especially when faced with the dynamic, unpredictable de-

formations that arise during real-world handling (see Section 9.7.3).

To tackle this complexity, we develop a learning-based action prediction frame-

work that jointly reasons about both arms’ actions to maximize a bin-packing
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efficiency score. The problem is further complicated by the fact that bin-

packing must operate in an online fashion, where packages arrive sequen-

tially without prior knowledge of their characteristics [224]. Moreover, purely

simulation-trained models often suffer from sim-to-real transfer gaps [225, 226],

limiting their effectiveness when deployed in physical systems. Extensive real-

world data collection is also impractical due to the vast diversity of package

types encountered in operational warehouses.

To overcome these challenges, this work adopts a hybrid learning strategy that

leverages the strengths of both simulation and real-world experimentation. A

simulation environment built in MuJoCo is first used to pre-train the model on

a broad range of deformable package interactions, imparting strong physical

priors into the learning process. The model is then fine-tuned using a small

but carefully curated set of real-world trials to adjust for sim-to-real discrep-

ancies. Finally, an optimizer-in-the-loop is integrated into the framework to

predict action parameters that directly maximize packing efficiency without

requiring perfect simulation fidelity. This combined approach allows the sys-

tem to generalize across a wide range of packages while maintaining robust

real-world performance.

The key contributions of this chapter are summarized as follows:

• Development of a bimanual robotic system capable of securely and ef-

ficiently packing deformable packages, validated with real-world experi-

ments across 18 distinct objects.

• A parameterized action prediction framework that learns to predict bin-

packing efficiency, achieving a mean squared error (MSE) of 0.003 across

100 real-world trials.

• A physics-informed simulation environment that models shell-like de-

formable object interactions in MuJoCo, enabling scalable pre-training.
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By extending the study of deformable object manipulation beyond classical

sheets and ropes to more complex, deformable packages, this work bridges an

important gap between academic research and the practical challenges faced

in modern warehouse automation. Through careful integration of bimanual

control, learning, and simulation, we take an essential step toward deploying

intelligent, resilient robotic systems in real-world logistics environments.

9.2 Related Work

Bimanual object manipulation: Bimanual robotic cells have been exten-

sively studied for handling various objects, including rigid, deformable, ar-

ticulated, etc [227, 228]. Due to their inherent ability to mimic human ma-

nipulation skills, such robotic cells are preferred for complex manipulation

tasks. However, they present motion and task planning challenges due to

their increased complexity [229]. In [230], the authors study the bimanual

manipulation of garments, where the objective is to fold clothes. Bimanual

manipulation has also been applied in medical robotics, where intricate dex-

trous manipulation capabilities are essential [231]. Prior research often em-

ploys a primitive-based approach, predicting parameters for specific movement

primitives [232], but none have addressed deformable packages.

Bin-Packing: Bin-packing in robotics has been a long-standing problem

[233]. Traditionally, bin-packing refers to the problem of maximizing the num-

ber of objects packed into a bin [234]. Our focus lies in manipulation planning

within this context, specifically addressing the online bin-packing problem of

object manipulation and placement [222]. Past research has predominantly

examined bin packing for homogeneous, rigid, regular-shaped objects [235–

237]. However, the challenge of packing deformable objects remains largely

unexplored [238, 239].
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Deformable object manipulation: Recently, deformable object manipu-

lation has gained significant interest [227]. In [240], the authors propose a

system for manipulating deformable packages. However, the focus is on ef-

ficiently picking packages from a pile rather than stowing them in a bin. In

[226], the authors model object interactions and demonstrate the robotic stow-

ing task with a single robot arm. However, they focus on rigid objects easily

perceived by an image or point cloud rather than objects hidden inside pack-

ages. Most of the other work mainly focuses on manipulating objects such as

sheets [3], garments, elastic cables [228], etc. In [241, 242], the authors study

the bagging task but focus on manipulating the deformable bag for packing.

Our work differs in its emphasis by modeling the impact of robot actions on

bin-packing efficiency rather than inter-object interaction.

9.3 Bimanual Robot Setup for Packaging

Fig. 9.2 illustrates the deformable package bin-packing task facilitated by the

proposed bimanual setup. This process involves picking a package, ensuring

its safe transportation, and appropriately positioning it within the bin. The

overarching goal is to optimize packing efficiency and process time. A crucial

consideration for achieving high efficiency in this task lies in maintaining the

stability of packages within the bin; this entails ensuring that in-bin packages

remain upright relative to the bin’s base and that new packages are safely

deposited at their intended locations. Packages need to be upright and snugly

packed due to the downstream requirements of the bin that would typically

traverse across a large fulfillment center on a mobile platform or conveyor.

Other packing strategies can lead to a potential risk of the package being

dislodged from the bin during transportation.
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Figure 9.2: Overview of the entire pick-and-place pipeline with the
bimanual robotic cell.
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Our setup (Refer Fig. 9.2) comprises two KUKA LBR IIWA robots equipped

with joint torque sensors capable of operating under impedance control mode.

The in-bin robot operates with perpetual compliance, while the pick-place

robot exhibits compliance only during picking. The compliance of the pick-

place robot is enabled to compute package characteristics online (Refer Section.

9.6). The in-bin robot is retrofitted with a rigid paddle-shaped tool to ma-

nipulate the in-bin packages, while the pick-place robot has a suction-based

gripper for safe picking and transporting packages. In the context of bin-

packing, both robots perform certain action primitives that enable the task

objective. A RealSense D415 camera provides RGB-D image observations of

the bin to extract a comprehensive bin-state representation.

9.4 Problem Formulation

The objective of the bin packing problem is to optimize packing efficiency.

Thus, given an observation O of the bin state S at a given instance, the goal

is to compute robot actions a1 and a2 for the pick and place robot (Robot 1)

and the in-bin robot (Robot 2), respectively. We assume that packages are

handled one at a time in the order of arrival, following an online approach for

bin packing.

Let ai = ⟨ai1, ai2⟩ ∈ A be the action the bimanual system executes at state S

for packing the ith package, where i ∈ [1, N ] and N is the total number of

packages. We also define a scoring function η(·, ·) that computes the packing

efficiency of a bin, given the observation of the bin state and characteristics

of the package that is queued to be placed in the bin. Thus, the bin packing

problem can be represented as solving the following program:

max
a∗i

η(O, pi) (9.1)
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Here, a∗i is the optimal action that maximizes the packing score η(·, ·) and

pi are the characteristics of the ith package that is going to be placed in the

bin. The actions here are robot end-effector poses for both the robots with

respect to a base frame of reference. Assuming that the bin dimensions and

position are available, the actions for the robots can be precisely defined as

ai1 = (x1, β1), and ai2 = (x2, z2, β2). Here, x1 & x2 are the x movement of the

corresponding robots, z2 is the z movement of the robot-2, β1 & β2 are y euler

angles w.r.t a nominal frame Tpackage ∈ SE(4). We fix the other degrees of

freedom due to their redundancy in influencing η(·, ·) (Refer Section 9.6.1 for

details). Additionally, we presume access to a time-optimal trajectory planner

with collision-checking capabilities to facilitate the minimization of process

time.

9.5 Approach

9.5.1 Packaging Pipeline as a Finite State Machine (FSM)

Our bimanual bin-packing pipeline can be represented as an FSM to facilitate

control and task planning (Refer Fig. 9.3). Upon the arrival of a new package,

the system transitions from pick pose detection to successful placement in the

bin. The perception module provides the system with image and point cloud

observations to compute nominal pick and drop locations. However, relying

solely on perception module data can lead to failures due to calibration issues

and the deformable nature of the packages. Hence, developing a strategy for

learning the optimal actions for both robots involved in the bin-packing process

is crucial. We outline the key states governing task completion as follows.

Pick State: The system estimates the pick pose of the package using the

RGB-D image from the overhead camera. We generate the segmentation
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Figure 9.3: The pick and place pipeline for bin-packing is represented as a
simplified FSM due to its sequential nature. Such representation guides the
system’s high-level actions.
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Figure 9.4: Left: Our entire model and real-time optimization pipeline to
compute optimal actions that maximize the packing score. Packing score
prediction functions are modeled with a Multi-Layer Perceptron (MLP).
Right: The packing score representation and bin state definition.
Definitions remain the same for computing both packing score 1 and
packing score 2

mask of the package using YOLOv8 on the RGB image. Subsequently, an

oriented bounding box is generated for the observed point cloud. Since pack-

ages are placed on the table, only yaw rotation is considered for the pick pose.

The trajectory planner computes a feasible trajectory to the pre-pick pose.

The pick-place robot moves linearly in the z-direction, interacting with the

package under compliance control mode while recording external forces on its

end-effector. The stiffness (K) and thickness of the package are determined

using the recorded Fz on the robot’s flange and the z-deviation (∆Z) from its

commanded goal pose.

Transport State: After picking up the package, the robot receives a drop

location from the system. Subsequently, the transport robot follows a time-

optimal trajectory to safely deliver the package, considering maximum velocity

and acceleration constraints to prevent mid-trajectory drops. Force-torque

data is recorded during this motion to determine the package’s mass. This

enables the characterization of package attributes Pt = (m, l, b, h,K), where

m is the mass in kgs, l, b, h are dimensions in meters, and K is stiffness in

N/m.
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Bin-preparation State: The in-bin robot ensures package stability and up-

right positioning within the bin. Once the bin is stable, the system provides

the Pt and current state observation for the in-bin robot to compute the opti-

mal action a1. We observe that the height at which the paddle is placed while

sweeping plays a crucial role for a successful sweep.

Package Drop State: Once both the robots are at their intended locations,

the suction pressure is halted, allowing the package to drop into the available

space. Subsequently, the in-bin robot performs a sweep motion under com-

pliance control mode. During sweeping, the paddle aligns with the package

while maintaining the z height computed in a2. Sweeping is repeated until the

packages are stable. This process iterates until the bin reaches full capacity.

9.5.2 Learning Packing Score Function

Defining a metric to quantify bin-packing quality can be approached in several

ways. Our proposed bin-packing action prediction framework maintains flexi-

bility in accommodating various metric definitions. However, for our specific

downstream application, we required a metric tailored to our unique setup.

We recommend that practitioners redefine the packing score metric to align

with the specifications of their individual cells. Given our bimanual setup

and the deformable nature of packages, we had to design a packing score that

captures the influence of both robots on packing efficiency. Thus, we define

packing score as depicted in Fig. 9.4. The γ1 and γ2 components promote bin

stability by encouraging package configurations aligned with the last package

in the bin. The γ3 and γ4 components ensure that the packing fraction of

the bin is maximized and the configurations that disrupt the current bin state

are penalized accordingly. Moreover, we define packing scores using the same

elements for the pick-place robot and the in-bin robot. Throughout training
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data collection, these scores are computed using the point cloud observations

(Refer Section 9.6.1), and our objective is to predict these scores for a given

action set at a nominal bin state.

One potential approach involves predicting these scores for given actions an-

alytically. However, due to the deformable nature of packages, predicting

package dynamics using finite element methods or analytical approaches poses

significant challenges [227]. Thus, we aim to learn a model to predict the de-

fined packing score given a new package and the corresponding robot actions

for a given bin configuration. This model serves as the function approximator

for η(., .). Our empirical investigations revealed that the final packing score of

the bin for a package placement is influenced by the sequence of actions corre-

sponding to the drop of the package (robot-1 actions) and the sweeping of the

package (robot-2 actions). Suboptimal package placements during the suction

robot’s package-dropping phase hinder the in-bin robot’s ability to achieve a

high packing score.

Consequently, the model architecture for predicting the packing score must

account for this sequential dependence. As illustrated in Fig. 9.4, our proposed

architecture addresses this challenge by simultaneously optimizing the packing

scores of both robots. Specifically, we feed the packing score of the bin after

the transport robot’s actions η1 into the network responsible for predicting

the packing score after the in-bin robot’s actions η2, ensuring coordinated

optimization.

The model comprises two multi-layer perceptron networks, MLP 1 and MLP

2 (Refer Fig. 9.4), predicting the corresponding packing score. The input

to MLP 1 is the robot actions a1 and a2, as well as the bin-state defined by

the last package’s orientation with respect to the bin’s vertical face and the

distance of the package’s base from the bin’s origin (Refer Fig. 9.4). The
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bin state is computed using point-cloud observation of the bin (Refer Section

9.6.1 for details). We also tried using PointNet [243] architecture as a state

encoder. However, our minimalist state representation gave us satisfactory

performance (Refer Section 9.7). Moreover, this approach aids in reducing the

overall model complexity, thereby improving the parsing time and memory

footprint necessary for real-time execution. The MLP 2 takes the output of

MLP 1, package characteristics, and the robot-2 actions a2. This design choice

is motivated by the observation that η2 is conditioned only on η1 and robot-2

actions a2. Here, η1 serves as a surrogate for the bin-state post package drop

is complete. The model is trained by optimizing the following loss function

with L2-regularization:

Lpacking(w) =
2∑
i=1

λiLipacking + λ3||w||22 (9.2)

Where Lipacking (Refer Eq. 9.3) is the Huber loss that motivates reducing mean

as well as median error and is suitable for the packing score’s data distribution,

Lipacking =


1
2(y

i − ŷi)2 if
∣∣(yi − ŷi)∣∣ < δi

δi ∗ ((yi − ŷi)− 1
2δ
i) otherwise

(9.3)

Here, L1packing and L2packing are the loss values for both robots’ packing scores,

λ1, λ2, λ3 are regularization hyperparameters, while δ1 & δ2 are thresholds at

which change gets triggered between L1 & L2 loss.

9.5.3 Learning Optimal Robot Actions

The model described in Section. 9.5.2 predicts the corresponding packing

scores for the actions executed by robot 1 and robot 2, given the bin and

package state. Our objective is to solve the inverse problem, i.e., to compute
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the actions that can maximize both the packing scores. In order to achieve

this, we devise an optimization loop in conjunction with the MLP model (Refer

Fig. 9.4). The objective of this optimizer is to maximize the weighted mean

of score 1 and score 2.

For such an optimization scheme to be viable in real-time execution, a crucial

design consideration is the convergence time. Furthermore, the loss landscape

for our score prediction model (Refer Eq. 9.3) can be saddled with several lo-

cal minima, leading to suboptimal action computations. Thus, we opt for the

parallel basin-hopping method, a standard global optimization routine widely

used for such problems [244]. This method reinstates numerous local opti-

mizers with initial conditions in the vicinity of the current best local minima.

The local optimizers use a gradient-based optimization scheme based on the

L-BFGS-B algorithm, which supports bounded-constrained optimization. The

bounds are placed on the domain of the action space. Thus, in this manner,

we overcome the problem of being stranded in suboptimal local minima, and

parallel basin-hopping ensures convergence can be achieved in the minimum

possible time for it to be suitable for real-time deployment.

9.6 Experiments

9.6.1 Real-World Experiments

We collect the data necessary to train the packing score prediction model.

18 different types of objects (6 Rigid, 12 Deformable) are packed inside an

LPDE polyethylene-based padded package (Refer Fig. 9.5a). We aim to col-

lect data for packing scores for a given bin state and a package. Thus, we

initially used 12 packages (9 Deformable + 3 Rigid) for training data collec-

tion. We uniformly generate a sequence of packages of different thicknesses

213



(a) Sample objects packed inside the
package in real data collection

(b) Simulation data generation in MuJoCo

Figure 9.5: Simulated and real data generation for model training. We
replicate the setup in MuJoCo with deformable packages

and execute the bin-packing pipeline described in Section. 9.5.1. During exe-

cution, we uniformly sample the values for actions a1 (x1 : U(−0.02, 0.02) m,

β1 : U(0.0, 20.0) degrees) and a2 (x2 : U(0.0, 0.03) m, z2 : U(−0.07, 0.05) m

β2 : U(0.0, 20.0) degrees) from the bin state. Additionally, we collect the raw

point cloud of the bin to compute the bin state. The cropped point cloud data

comprises the container, paddle, and package stacks. The force data collected

while package pickup is used to compute the package stiffness and thickness

using the impedance control parameters ∗. In this manner, we generate about

1000 bin-packing scenarios and compute corresponding packing scores. The

data collection is executed in a self-supervised manner, thus obviating the need

for expensive human labeling.

Generating Bin State Data and Ground Truth Packing Scores: To

compute the bin state, we collect the raw point cloud of the bin. We then em-

ploy a density-based spatial clustering algorithm (DBSCAN) [245] and plane

patch detection [246] to extract the position and orientation of the package

∗Refer to our project website for implementation details: https://sites.google.com/usc.edu/bimanual-
binpacking
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stack. Once the suction robot drops a new package, to segregate this new pack-

age from the previous package stack and container, we perform a difference

operation between the old and newly captured point cloud and subsequently

perform DBSCAN and plane patch detection for computing the pose of the

new package. The same process is repeated after the bin-sweep operation is

completed. Then, using these point clouds (refer to Fig. 9.6), we compute the

packing scores as per definitions in Fig. 9.4.

Dataset
Size

(Real Data)

MSE↓ MAE ↓ Max Error↓
Trained on
Sim + Real Trained on Real Only Trained on

Sim + Real Trained on Real Only Trained
Sim + Real Trained on Real Only

Score 1 Score 2 Score 1 Score 2 Score 1 Score 2 Score 1 Score 2 Score 1 Score 2 Score 1 Score 2
Training 695 0.0025 0.0026 0.0042 0.005 0.012 0.062 0.036 0.085 0.040 0.070 0.102 0.110

Validation 100 0.0032 0.0035 0.0067 0.0081 0.063 0.062 0.096 0.098 0.161 0.182 0.325 0.356
Test 100 0.0033 0.0034 0.0075 0.0081 0.065 0.076 0.098 0.101 0.165 0.191 0.372 0.395

Table 9.1: The packing score prediction model’s performance, evaluated
with 5-fold cross-validation, shows that the model pre-trained on
simulation data outperforms others across all metrics, reducing the
maximum error by 46-48%

Figure 9.6: The raw point cloud and the corresponding processed point
clouds used for bin state and packing score computation. Process for
computing packing score 1 & 2 is the same
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9.6.2 Simulation Experiments

In simulation, we replicate the data collection strategy adopted in the previous

section. We use MuJoCo 3.0 [247] and model each package as a flex object.

We generate instances of packages with varying thicknesses (U(0.005, 0.07)m)

and stiffnesses (U(10, 8000) N/m) to ensure that the dataset represents the

type of objects that can be encountered during real-world execution. In the

simulation, the key is to generate diverse data; thus, we sample different bin

states ranging from empty to almost full bins. The paddle-shaped tool and

the bin are modeled as rigid objects. We generate 20000 simulation scenarios

to pre-train the packing score prediction model (refer to Fig. 9.5a).

9.7 Results

9.7.1 Failure State Estimation and Packing Score Predictions

on Real Data

Failure State Estimation: Prior to training a model to predict a packing

score for a given state and action, we train a state estimation model that

classifies a given state action pair into two categories : (1) feasible and (2) in-

feasible (Refer Fig. 9.7). Infeasible states are those with a packing score below

0.4. Our observations indicate that packing scores below 0.4 typically result

in the system’s inability to recover to a high packing score after the bin sweep,

a trend consistent across both simulation and real-world data. Therefore, we

focus on predicting packing scores only for feasible states. We identified 1138

infeasible cases out of 20,000 in simulation data and 105 infeasible cases out

of 1000 in real-world data. We label these cases as infeasible. Consequently,

we train the state estimation model with simulation and real datasets. The
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training dataset comprises feasible states (Real: 695 + Sim: 18,862) and in-

feasible states (Real: 55 + Sim: 1138), with the model trained using binary

cross-entropy loss. We evaluated the model’s performance on test data con-

sisting of 200 feasible and 50 infeasible real-world cases. The model performs

classification with an F1 score of 0.99 (Precision: 0.995 and Recall: 0.987).

Packing Score Prediction: Our packing score prediction model results are

illustrated in Table. 9.1. We train the model on a combination of real and

simulated data. Initially, we pre-train the model with 18862 simulation data

points. This model is then fine-tuned on a batch of 695 real-world data points.

Model 1 and Model 2 (Refer Fig. 9.4) consist of 3 fully connected layers with

ReLU activations. We learn the model parameters using an Adam-W optimizer

with a fixed learning rate of 0.002 and batch size of 30. To demonstrate the

impact of simulation, we present the results by training two model instances:

(1) A model pre-trained on simulation data and then fine-tuned on real data

and (2) A model only trained on 695 real data points. Table. 9.1 depicts that

simulation data significantly boosts model performance for all metrics.

Our mean squared error (MSE) values of 0.0033 and 0.0034 for packing scores

1 and 2 suggest a strong fit to the test data. These low MSE values indicate

that our model’s predictions closely align with the observed packing scores.

Cases with error > 0.15 occur infrequently, specifically in only 4 cases out of

100. Notably, these instances typically occur at the fringe, with packing scores

between 0.4 and 0.5. All the models are trained on a system configured with

an Intel i7 4.9 GHz and equipped with NVIDIA GeForce RTX 3060.
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Figure 9.7: Intermediate dropping and sweeping performances of the
system achieving high-quality bins. We also demonstrate the bin packing
instances when scores were lower than 0.8.

No. of Trials

MSE ↓ MAE ↓ Max Error ↓
Latency

(ms)↓Score 1 Score 2 Score 1 Score 2 Score 1 Score 2

20 0.0019 0.0021 0.033 0.038 0.108 0.107 226

Table 9.2: The performance of the action prediction framework in
predicting bin packing score during online execution. The mean packing
score during these trials was 0.88 for score 1 and 0.91 for score 2
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9.7.2 Action Prediction Performance

To assess the effectiveness of the optimizer in predicting optimal actions, we

conducted real-world trials involving 20 distinct bin states not previously en-

countered in our data collection. These trials utilized the remaining six pack-

ages from our dataset, ensuring a comprehensive evaluation. Subsequently,

we executed the actions recommended by the action prediction framework for

these novel bin states and recorded the resulting packing scores.

Table 9.2 presents a comparative analysis between the observed packing scores

and those predicted by our framework. Our findings illustrate the optimizer’s

ability to effectively predict actions that maximize packing scores. Moreover,

the calculated Mean Squared Error (MSE), Mean Absolute Error (MAE), and

maximum error values between the predicted and observed packing scores

underscore the robustness of our system. The max errors of 0.108 and 0.107

occurred in scenarios where the bin approached full capacity. The average bin

packing scores during these trials were 0.88 for score 1 and 0.91 for score 2,

reaffirming the efficacy of our system in consistently producing well-packed

bins.

Additionally, our framework exhibits computation efficiency, with an average

processing time of 226 milliseconds for computing actions for a given state.

This time encompasses bin state computation, model parsing, and optimizer

convergence, indicating the viability of our model for real-time execution and

its applicability in practical scenarios.

9.7.3 Bin-packing Performance:

To demonstrate the need to learn optimal actions for our bimanual setup,

we benchmarked our method against two approaches: (1) Random and (2)

Heuristic-based. In random trials, we uniformly sample values for actions
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No of
Trials

Type of
Trial

Avg.
Score 1 ↑

Avg.
Score 2 ↑

Success
Rate ↑

20
ours 0.88 0.91 20/20
heuristic 0.76 0.82 16/20
random 0.62 0.66 13/20

Table 9.3: Our approach outperforms random and heuristic-based
approaches with a high final packing score of 0.91

similar to Section. 9.6.1 and record the bin-packing score and whether the

package placement was successful or not. For the heuristic approach, we use

package thickness and stiffness as parameters to decide the action values and

assume that package deformation plays no role in packing. As shown in Table

9.3.

9.7.4 Sensitivity Analysis:

Number of
Samples

Perturbation
in Actions

Mean Change
in Packing Score

Max Change
in Packing Score

100

10 % 1.5 % 2.6%
20 % 2.3 % 4.1 %
30 % 4.6 % 10.2 %
40 % 7.4 % 17.6 %
50 % 18.2 % 24.5 %

>50 % 25.3 % 34.7%

Table 9.4: Effect of adding noise in the actions computed by the optimizer.
Here, a 50% change in action values corresponds to 2 cms in position values
and 10o in orientation values, respectively.

The optimizer plays a pivotal role in predicting actions that maximize packing

scores. Its effectiveness hinges on whether the loss landscape for action vs.

packing score at a given state warrants such optimization. Indeed, if a random

selection of actions consistently yields high packing scores, the necessity for

an optimizer diminishes. To test this hypothesis, we conduct a sensitivity

analysis of the optimizer.
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In this analysis, we initially compute the optimal actions that maximize the

packing score for the bin states in our test data. Subsequently, we system-

atically perturbed the action space by random increments and observed the

corresponding effects on packing scores. Table 9.4 presents our findings, reveal-

ing an exponential decrease in packing scores when optimal actions computed

by the optimizer were randomly perturbed. Notably, instances where action

values were perturbed by 50% resulted in an average packing score decrease

of 18.2%. These results underscore the indispensability of optimization in our

problem domain. They suggest that arbitrary action selections are unlikely

to yield high packing scores consistently, reaffirming the critical role of the

optimizer in maximizing packing efficiency.

9.7.5 Simulation Results:

To demonstrate the fidelity of our simulation, we recreate the scenarios from

our real-world dataset and conduct a qualitative and quantitative evaluation

of the resulting discrepancies. Fig. 9.8 illustrates a few such cases for the bin

state and action pairs that either lead to failure conditions that are crucial

to recognize if we want to rely on the simulation data to provide us a robust

enough representation of reality and a high-quality inductive bias for model

training. Our simulation effectively replicates failure cases, including scenarios

where (1) dropped packages disrupt in-bin arrangements, (2) the dropped

package lands on top of other packages by colliding with the paddle tool,

and (3) the bin sweeps by the in-bin robot that led to instability in the bin.

These cases are the primary reasons for cases with low packing scores, and the

ability of our simulation to replicate these scenarios underscores its proficiency

in generating high-quality data.
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Figure 9.8: The comparison between the real world and the corresponding
simulation scenario, depicting the effectiveness of simulation to capture the
essence of package characteristics
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Additionally, we simulate the real-world scenarios in our test dataset. We

compute the corresponding values for both the packing scores and compare

them with the true values. The low MSE values in the simulated vs. true

packing scores error (Refer Table. 9.5) demonstrate that simulation produces

data that can provide a good inductive bias for pre-training the model. The

max errors were 0.33 for Score 1 and 0.32 for Score 2, observed in cases with

lower packing scores (<0.5). However, in these cases, the values of packing

scores in the simulation were lower than the actual observed ones, thus making

the sim data reflective of failures.

No. of
Datapoints

MSE ↓ MAE ↓
Score 1 Score 2 Score 1 Score 2

1000 0.014 0.013 0.096 0.09

Table 9.5: Performance of Sim vs Real in computing packing scores by
recreating scenarios encountered in test data. The errors >0.2 occur in
only 0.5% cases. However, all the failure cases are captured robustly with a
low error.

9.8 Summary

This chapter introduced a compositional learning framework for addressing

the emerging challenges of manipulating shell-like deformable packages in bin-

packing operations, a problem increasingly relevant in robotic warehousing

and fulfillment industries. By developing a bimanual robotic cell and an action

prediction methodology that jointly reasons about coordinated grasping and

sweeping actions, we demonstrated how robots can achieve optimized packing

efficiency even when dealing with complex, flexible packages.

A key contribution of this work lies in the integration of simulated and real-

world data within a self-supervised learning framework, enabling robust policy
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training without requiring extensive manual labeling. Furthermore, the pro-

posed framework incorporates physics-based priors in the form of the stiffness

of the packages being handled. The developed simulation pipeline accurately

captures the interaction dynamics between deformable shells within the bin,

facilitating effective transfer to physical deployments. Our experimental re-

sults highlight the system’s ability to generalize across a variety of packages

and demonstrate strong real-world performance.

Overall, this work advances the frontier of robotic manipulation for complex

deformable objects, providing a foundation for scalable, reliable, and efficient

automation of shell-like package handling tasks.
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Chapter 10

Anomaly and Failure Detection for Deformable

Objects

10.1 Introduction

In robotic manipulation tasks, failures are inevitable. Most of the learned poli-

cies we discussed in previous chapters are susceptible to failures due to mod-

eling errors (sim-to-real gap), errors in controllers, perception errors, changes

in the environment (lack of strong inductive bias), etc. In previous chapters,

we studied how to detect and overcome perception errors, highlighting the

potential of modern learning frameworks. Deep learning-based models can be

powerful in detecting failure modes. Nonetheless, the reliance of these models

on extensive datasets necessitates meticulous data collection and annotation

procedures. Reliable failure detection is a cornerstone of any robust robotic

manipulation system, but it is especially challenging when the manipulated

objects themselves are deformable. Unlike rigid parts, where defects can often

be characterized by simple geometric deviations, deformable materials exhibit

a wide variety of irregular, context-dependent failure modes. In sheet-handling

applications, such as composite layup or flexible packaging, defects like wrin-

kles and folds can appear in countless shapes, sizes, and orientations, making

it difficult to define clear, universal criteria for what constitutes a “failure.”
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Detecting these defects early, before they propagate into more serious errors

or lead to scrapped parts, is critical in high-performance industrial processes

[248–252]. In high-precision manufacturing domains such as aerospace, even

minor wrinkles during composite layup can undermine structural integrity,

while in electronics or consumer goods assembly, fabric folds or surface defects

can disrupt downstream operations. Early detection of defect onset—rather

than relying on post-hoc identification—enables timely corrective actions, re-

ducing material waste, rework, and production delays. As a result, robust

defect detection has emerged as a critical enabler for the large-scale adoption

of advanced robotic systems in modern manufacturing environments.

Several defect detection applications in manufacturing employ traditional vision-

based methods [253–255]. In such applications, a high-resolution camera cap-

tures images of the part. These images are then processed with conventional

image segmentation methods that are based on pixel filtering and image gra-

dients. Such methods are highly sensitive to external factors such as lighting

conditions, camera intrinsics, anisotropic interactions of the components, etc.

These traditional methods are predominantly used for defect detection related

to dimensional errors. However, another class of processes exists where com-

ponents might be deformable (e.g., prepreg composite layup), where methods

that depend on well-defined geometrical features of the part might be unable

to detect defects. Moreover, these conventional techniques require fine-tuning

of certain parameters to ensure robustness and repeatability in detection. De-

fects generated during processes such as composite prepreg layup have features

that vary based on several external factors. Such salient features are mainly

a result of the part’s interaction with ambient light and the geometrical ap-

pearance of the defects.

To overcome these issues, recently, defect detection methods based on deep

learning have been gaining a lot of momentum [213, 256–258]. A key aspect in
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Figure 10.1: Variation in the wrinkles formed during prepreg composite
layup

227



ensuring the resilience of robotic systems lies in generating high-fidelity data

conducive to training robust models. Researchers have explored implementing

deep learning in applications with extensive availability of process data, such

as images or thermal signatures from sensors [259]. The major challenge with

deep learning methods is their inherent dependency on the availability of huge

amounts of data. Additionally, this data needs to be processed and prepared

(e.g., annotated) for utilization in deep learning model training. Such pre-

processed data is not readily available for several manufacturing applications.

Furthermore, manually collecting and generating such data may not be feasible

due to time and cost constraints.

In processes where collecting online process data becomes infeasible, synthetic

data can play a critical role in the deployment of deep learning models. With

advancements in generative models and computer graphics, the learning com-

munity has pivoted towards use of synthetic data.[260–264]. Synthetic data

generation has emerged as a valuable avenue in the pursuit of solving the data

issue. Synthetic data can be effective in learning segmentation models if the

data exhibits realism not only in texture and appearance but also preserves

the innate physics of the original data. With conventional generative adver-

sarial methods, capturing real data’s physics is difficult. Synthetic images that

look photorealistic and manifest the physical features of the original data can

solve the data generation problem for defect detection in complex manufac-

turing settings. Therefore, synthetic image generation has a huge potential for

enabling the large-scale implementation of deep learning methods for defect

detection in manufacturing applications.

Synthetic image generation, as discussed, presents its own set of challenges

in the context of deep learning. However, the traditional methods employed

for synthetic image generation may not be sufficient when it comes to spe-

cific applications that deal with deformable objects, e.g., composite prepreg
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layup processes. Composite prepreg sheets are highly pliable and have a pe-

culiar appearance dependent on the material type, weave pattern, etc. Due

to the compliant nature of the sheets, it is challenging to synthesize images

that emulate defects of the real-world process. Prepreg composite layup is

characteristically a low-volume process with the defects exhibiting an irregu-

lar pattern, complex deformations of the material, and anisotropic reflections

when captured using a 2D camera (Refer Fig. 10.1). Hence, we need a solu-

tion that can accurately model the sheet’s physical interactions under external

constraints to simulate the defects that occur in-process.

Figure 10.2: Comparing Synthetic Images with the Real Images. Note:
The images shown here are for representative purposes only. They do not
correlate in terms of visual appearance.

This chapter presents a physics-informed synthetic data pipeline for robust

wrinkle and fold detection in deformable-sheet manufacturing. By marrying

high-fidelity thin-shell simulation with advanced CGI rendering, we create a

large-scale, photorealistic image corpus that captures the true physical and

visual complexity of sheet defects. Although composite layup can produce
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many failure modes—air gaps, bridging, fiber distortion, etc. [106]—our focus

here is on wrinkles and folds, whose distinct 2D patterns lend themselves to

image-based segmentation.

A systematic framework is introduced to generate defect-prone sheet config-

urations: first, a validated physics model simulates how boundary conditions

and material properties give rise to wrinkles; then, a texture-mapping pipeline

renders these deformations under realistic lighting and camera models (see

Fig. 10.2). Using this approach, over 10,000 synthetic images encompassing

diverse wrinkle geometries and appearances were produced.

To ground our model in reality, we also collected 1,000 real in-process images

of wrinkles from an industrial prepreg layup cell. These were combined with

the synthetic set to form a hybrid training corpus. A Mask R-CNN network

[265] was then trained in two stages—first on synthetic data, then fine-tuned

on the real images. The resulting model achieves a mean Average Precision

(mAP) of 0.98 on a held-out set of 200 real images, accurately predicting both

bounding boxes and pixel-precise defect masks (see Fig. 10.13).

This physics-informed, simulation-driven approach bridges the sim-to-real gap,

overcomes data scarcity, and delivers an off-the-shelf solution for online defect

detection in prepreg composite layup. To facilitate further research, the full

synthetic and real-image datasets have been made open-source and publicly

available.

10.2 Overview of Approach

In this section, we will briefly outline the components of our defect detection

system. The entire system can be subdivided into four main components:

Real Image Collection, Synthetic Image Generation, Data Preparation, and
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Figure 10.3: Process flow describing the system.

the Deep Learning Model. Fig. 10.3 gives an overview of these subsystems

and the individual elements.

Real Image Collection: Although collecting real data for the layup process

might be cumbersome, it is important that we capture the features embodying

wrinkles that are not simulated. To achieve this, we perform a step-by-step

layup and try to recreate scenarios that may lead to defect formation and

capture the ones that lead to actual defects. We collect about 1,000 images

using the approach described in Section 10.3.

Synthetic Image Generation: The synthetic imaging component consists

of a FEM thin-shell simulator and the CGI module for computer graphics

rendering. Our simulator here is based on the previous work by the authors

[1] that builds an accurate mechanical model of the composite sheet. This

simulator helps accurately predict sheet deformation under varied external

constraints. We emulate the possible configurations of the sheet that can lead

to the formation of anomalies on the sheet. Such anomalies signify the onset

of a defect. Furthermore, we also simulate wrinkle defects for an already-

conformed sheet on the composite tool. The simulator outputs a triangulated

mesh of the sheet. This mesh then passes through a CGI pipeline that uses

ray tracing to render a photo-realistic image. The rendering is improved by

applying the custom texture we generate for the composite sheet. The entire

process is detailed in Section 10.4.
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Data Preparation: Once we have developed a hybrid dataset of real and

synthetic images, we describe methods to annotate the data and formally

define what constitutes a wrinkle or a defect. We describe the data preparation

method in detail in Section 10.5.

Deep Learning Model: After the data preparation and processing is com-

pleted, the properly annotated dataset can be used to train a deep learning

model for predicting defects. As mentioned in Section 10.1, we use the Mask

R-CNN architecture that outputs a mask of the predicted defect within a

bounding box. The model architecture and framework are discussed precisely

in Section 10.6.1.

Using the methodology presented in our work, we can design a robust system

that can be deployed to detect defects in the composite layup process. Such

a system can effectively detect wrinkles formed during composite layup and

detect anomalous configurations of the sheet that may lead to defect formation.

This obviates the need to remove the defect altogether. We will describe each

of the aforementioned components comprehensively in the following sections.

10.3 Real Image Collection

To generate a dataset comprising of images of the defects formed during the

actual process, we used an experimental setup with an industrial tool and two

sheet grasping robots as shown in Fig. 10.1 and Fig. 10.2. We use a set

of industrial grippers with custom 3D-printed attachments to grasp the sheet

appropriately. The objective of the setup is to emulate a robotic composite

layup process and capture various types of wrinkles and anomalies that may

emerge during the process.

In this work, we have focused only on wrinkles as a class of defects for detection.

Defining a wrinkle on a cross-section of the sheet that has already conformed
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(a) (b)

Figure 10.4: The two types of wrinkles witnessed during composite layup.
(a) The wrinkles formed on a conformed/draped portion of the sheet; (b)
an anomalous region on the undraped portion of the sheet that signifies the
onset of a wrinkle.
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to the tool is straightforward. These wrinkles have clear, well-defined features,

as can be seen in Fig. 10.4a. They are formed due to improper flexing of the

sheet, leading to the formation of ridges.

A robust defect detection system should not only be able to detect already

formed wrinkles but also predict if a certain configuration of the sheet is likely

to form a wrinkle. This helps in avoiding defect formation altogether. To

achieve this functionality, we try to flex and hold the composite sheet in con-

figurations as depicted in Fig. 10.4b. These anomalous configurations are

where, if a robot or an operator were to conform the sheet to the tool, a wrin-

kle would form. These configurations are commonly encountered and are the

leading cause of wrinkle formation in the composite layup process. Hence, we

capture features of such anomalous regions and classify them as defects.

Most parts in the composite industry have tubular (or tubular-like) cross-

sections. This entails the tool being rotated about an axis to wrap the com-

posite sheet around the tool’s geometry. To incorporate this variation, we

capture images of the wrinkles at different tool configurations (Refer to Fig.

10.4).

We used an overhead 2D camera with a 1920 x 1080 resolution to capture the

images. There were slight variations in the lighting conditions during the data

collection process. Furthermore, we also changed the position of the grasping

robots to avoid introducing bias into the images. In this manner, we generate

a dataset of 1,000 real images. This dataset consists of 800 images with a

combination of Type 1 and Type 2 Defects and 200 images with no visible

defects.
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10.4 Synthetic Image Generation

The real image dataset generated using the methodology of Section 10.3 pro-

vides a good benchmark for describing a wrinkle. Since generating large

amounts of real image data can be infeasible from the perspective of time

and material costs, we need to rely on synthetic images to train a robust and

accurate deep learning model. This section will describe the synthetic image

generation pipeline in detail. The key feature of our proposed pipeline is the

blend of accurate physics simulation that can emulate the Type 1 and Type 2

defects and a realistic texture of the composite prepreg material, capturing the

anisotropic parameters to generate photo-realistic images. We use the sheet

configurations that generated most of the defects as the basis for simulating

and replicating the Type 1 and Type 2 defects. We also generated synthetic

images with no perceivable defects.

We will describe every element of our synthetic image generation pipeline

and present a methodology to generate accurate and photorealistic images of

defects in the composite layup process.

10.4.1 Physics Based Simulator

To generate accurate synthetic images with realistic wrinkles, it is crucial to

simulate the sheet precisely. Traditional FEM simulators are infeasible due

to their slow convergence. In this work, we have employed a physics-based

simulator that is based on the previous work done by authors in [1], built on

top of the VegaFEM simulation library [29].

To generate synthetic imagery, we recreate the setup of Section 10.3 in the

simulation environment. A triangulated mesh of the same size as the sheet is

created and four constraints are added to replicate the sheet’s grasping points.

The aforementioned simulator can handle dynamic constraints. We move these

235



constraints so as to replicate the anomalous configurations experienced during

the real image generation process. We discuss this process in detail in the next

section.

10.4.2 Data sampling

Parameter Distribution

P1 [0, U(0.7, 1.0)]
P2 [1, U(0.7, 1.0)]
P3 [0, U(0, 0.3)]
P4 [1, U(0, 0.3)]
τ1 [U(0.1, 1.4), U(0,−0.4), 1]
τ2 [U(−2.5,−1.2), U(0,−0.4), 1]
τ3 [U(0.1, 1.4), U(0, 0.4), 1]
τ4 [U(−2.5,−1.2), U(0, 0.4), 1]

V1, V2, V3, V4 U(0.1, 0.3)
n N (0, 0.1)

Table 10.1: Parameters and their distribution in data sampling.

In this section, we discuss our methodology to simulate the anomalous con-

figurations. We generate uniform data by randomly sampling the thin-shell

locations and world-coordinate trajectories of the four constraints located on

the perimeter of the sheet mesh. The constrained vertices of the mesh are se-

lected close to the perimeter of the rectangular sheet to replicate the scenario

of Section 10.3. These constrained points are denoted by P1, P2, P3, P4. For

each trajectory, the converged simulated shape of the sheet is only stored at

the endpoint of the trajectory, regardless of the intermediate trajectory posi-

tions. Therefore, we simplify the trajectory of the constrained vertices into a

straight line from the starting to the ending point. We represent the vectors

joining starting and ending points by τ1, τ2, τ3, τ4, where each τi is sampled

randomly as given in Table 10.1. The velocities of the constraint vertices are

represented by V1, V2, V3, V4, and are also sampled randomly (Table 10.1). The
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simulation timestep t is a constant fixed at 10 milliseconds in our sampling

process. This enables the constrained vertices to reach the endpoints faster

while still being able to span the desired search space.

A trajectory is discretized into multiple simulation timesteps. In each timestep,

the four holding points move along their velocity vectors. To model the noise

from the robot actuators, the planner, the sensors, etc., we applied a simple

Gaussian noise n as a perturbation to the moving distance at each time step.

The sampling parameters are in Table 10.1.

The data sampling process can be executed in parallel. After the comple-

tion of trajectory execution, we stop the simulator after 55 timesteps, which

is sufficient for the simulator to converge and output the thin shell shape.

With a simple multi-core implementation, the proposed pipeline can generate

about 360 shapes per hour using a Core i7-9750H processor with six cores.

By employing the proposed pipeline, we generated 10,000 mesh shapes, cap-

turing varying wrinkling features. These shapes also capture some anomalous

configurations we encountered during real image data collection.

10.4.3 CGI Pipeline

Our physics-based simulator and the data sampling methodology produce

meshes that contain realistic wrinkles. However, to generate photo-realistic

images that can be used for training the model, we must also render the pro-

duced sheet meshes realistically. To do so, a high-quality texture of the sheet

is paramount. We employed CGI technology (described below) to generate a

detailed procedural texture of the composite sheet used in the real data collec-

tion. This texture can then be applied to the 10,000 synthetically generated

meshes to generate high-quality renders close to real images. In this work, ini-

tially, we experimented with generating an “Image Texture” by taking several
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Figure 10.5: The black-and-white tiled matte indicates the fiber direction
of the synthetic texture.

images of the carbon fiber sheet under varying lighting conditions and camera

angles. However, the generated image texture could not precisely capture the

light interactions of the sheet, rendering the images to look distinctly differ-

ent from the actual image. Hence, we adopted a methodology to generate

a procedural texture of the carbon fiber prepreg sheet rather than an image

Texture.

We used Blender [266], an open-source animation and rendering software, to

build the carbon fiber texture and render the images. A texture was con-

structed to imitate the real carbon fiber. We developed a custom CG texture

in Blender using its node editing system. There were three main components

to the texture: The first was mimicking the texture of the parallel-running

fibers in the carbon fiber. This was accomplished by stretching a procedurally

generated noise map in one dimension. The second step was to find a way

to reorient these fibers at 90o angles in certain areas, since the carbon fiber

sheet is made of interwoven vertical and horizontal carbon fiber strips. This
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Figure 10.6: Left: zoom on the CG texture. Right: photo of real carbon
fiber under a microscope (Visual Appearance may differ due to the scale).

was accomplished by procedurally generating an orientation map in different

software (Matlab), which can be seen in Fig. 10.5. The Blender texture gen-

erator then oriented the virtual fibers of the texture horizontally, where the

“orientation map” showed a pixel value of 0 (black), and vertically, where the

“orientation map” showed a pixel value of 255 (white). The result is a close

emulation of the interwoven appearance of the carbon fiber sheet. A close-up

view of the CG texture is shown in Fig. 10.6. Although to the naked eye, the

texture showcased in Fig. 10.6 might not look exactly similar in appearance

on a macro level, the objective of the texture is to capture the salient features

such as the shape of the wrinkle, appearance, etc. of the prepreg sheet. These

features are sufficiently good for training the deep learning model.
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Figure 10.7: A collection of images at different exposures (top) was
compiled to create a 360◦ panoramic HDRI (bottom).
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The generated texture can then be applied to the 10,000 synthetically gen-

erated meshes. When virtually lit and rendered, these objects look close to

photorealistic (see Fig. 10.2). We now describe this process.

First, we need to match the lighting of the virtual environment to the lighting

of the real environment. This entails capturing a spherical panorama of our

manufacturing space. We do this by photographing a mirror sphere and then

wrapping this 2D image onto a 3D photo-sphere in the computer. We pho-

tographed a standard 3′′ chrome ball commonly used in CGI applications from

two different angles and at several different levels of camera exposure to cap-

ture the entire spectrum of light present in the workroom. These images were

then wrapped to create the 360◦ high dynamic range image (HDRI) shown in

Fig. 10.7.

Next, we apply the texture and the lighting setup to produce renders that

closely replicate real-world images. The synthetic images generated using this

framework can be juxtaposed against real images in Fig. 10.2. We rendered

the 10,000 meshes to produce 10,000 images of the composite sheet in varying

configurations. The rendering was performed on a core i7-11700 (8 core, 2.5

to 4.9 GHz) processor boosted with an NVIDIA GeForce GTX 1660 Ti 6GB

GPU. With this configuration, the average time to render a single image was

about 5 seconds. Using these methods, a digital rendering environment can

then be created with optical materials and lighting conditions that match the

real manufacturing environment; see Fig. 10.8. We achieved this by importing

the HDRI images into blender and consequently performing ray tracing.

The proposed CGI pipeline helped us in augmenting our real dataset of 1,000

images. This hybrid dataset with 11,000 images is sufficient for feature extrac-

tion and is employed for training the deep learning model proposed in Section

10.6. Fig. 10.9 summarizes the synthetic image generation approach.
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Figure 10.8: The virtual environment.
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(a) (b)

(c) (d)

Figure 10.9: (a) Trajectory of the four holding points; (b) the shape after
executing the trajectory in our physical-based simulator; (c) output mesh
before rendering; (d) the CGI-rendered mesh.
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10.5 Data Preparation

The hybrid dataset generated using the methodology described in Sections

10.3 and 10.4 needs to be appropriately annotated for model training. We

described the key features of wrinkles in Section 10.3 and categorized them

into Type 1 and Type 2 defects. We used the same description to generate

the annotations for the dataset. We classify both Type 1 and Type 2 defects

as one class called “wrinkle”. Fig. 10.10 shows example annotations on a real

and a synthetic image.

Figure 10.10: Annotations depicting the Type 1 and Type 2 defects.
Kindly note that both Type 1 and Type 2 Defects are annotated as one
single class “Wrinkle”

We used an online open-source tool called makesense.ai to perform the an-

notations. This tool helped us generate polygon annotations that engulf the

image’s defected region (“wrinkle”) and can be saved as JSON files. All the

images were annotated using only one class per annotation called “wrinkle”.

Images with no visible defects received no annotation. Once we complete

the data preparation phase, we can then use the annotated data to train our

proposed deep learning network.
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10.6 Model Description

Our modeling methodology is based on the image segmentation deep learning

model Mask R-CNN [265]. We use a two-stage training procedure to train

the image segmentation model to detect defects in the composite sheet. The

first stage is a pre-training stage that uses a large synthesized dataset. The

second stage is a fine-tuning stage that utilizes a small real-world dataset. We

further introduce a scaled mixing technique to the fine-tuning stage so that

the synthesized dataset is also employed in the fine-tuning stage; this avoids

catastrophic forgetting. Our deep learning model architecture and training

details will be described in Sections 10.6.1 and 10.6.2, respectively.

10.6.1 Model Architecture and Settings

Figure 10.11: Mask R-CNN architecture.

We applied the Mask R-CNN shown in Fig. 10.11 as our base model for

the image segmentation task. After trying typical backbones, including VGG

[267], Inception [268], and DenseNet [269], We select a ResNet-50 for its best

performance among them as the backbone network which extracts features

from the input image. Feature Pyramid Network (FPN) [270] is used as the

neck and backbone network. This architecture better utilizes the extracted

features in a multi-scale manner.
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Ultimately, we use two heads applied as the output of the model, one for

outputting the bounding box and another for predicting the mask. The two

heads share a Region-of-Interest (RoI) network that proposes the potential

RoIs on top of the neck network.

The Mask R-CNN we use has been pre-trained on the Microsoft Common

Objects in Context (MS COCO) [271] dataset. This dataset consists of 1.5

million labeled images from 80 categories. Our pre-trained model learns rich

common visual patterns of images after performing transfer learning by itera-

tively adjusting modeling parameters through in-domain images of the carbon

fiber sheet. The proposed model will be able to detect task-specific patterns

(i.e., defects) quickly. Compared to training a model from scratch, we need

less redundant data to let the model start from learning the basic common

patterns.

Our implementation is based on the MMDetection framework [272]. The

model is trained on a single NVIDIA GeForce RTX 2070 GPU. For the model

that uses ResNet-50 as the backbone, the entire training process takes about

12.5 hours. The memory use is approximately 4.4 GB, and the inference runs

at about 14.5 fps. We also explored variants of the model architecture that

improve the model performance; they will be discussed in Section 10.7.3.

10.6.2 Training

Despite the high quality of our synthetic images, the sim2real gap [273, 274]

still exists. For example, the real carbon fiber sheet may have a slightly worn

surface, which causes the reflectance to be uneven. The physical specifica-

tions of a real sheet may also change over time. There may be temperature

variations. The complex lighting conditions in our production environment

are also difficult to reconstruct perfectly. The movements of the real robots
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are computationally expensive to be completely reproduced in the simulator.

Finally, the error from the physical simulator itself and the imperfection of the

rendering engine should also be considered. These minor errors accumulate

and cause a gap between the images of the real and virtual sheets. The time

and processing cost of pursuing a higher degree of realism in the synthetic

data increases exponentially, even higher than the cost of collecting real data.

Thus, a better solution is to compensate for the gap through real images.

However, directly mixing the synthesized data with real data and then using

the mixed dataset to train the model would cause an inductive bias. This

might cause the model to overly rely on the features learned from virtual

images while ignoring real images. We desire to learn the physics of the sheet

from the synthetic data, but then use the real data to compensate for the

details in the real production environment. The problem occurs due to the

data imbalance, given that synthetic images outnumber real ones by 10 to 1

in our dataset.

One approach to this problem is using a 2-stage training method. Sajjan et

al. [275] proposed to use a two-stage training procedure that first pre-trains

the network on a large out-of-domain real-world dataset, then fine-tune it on

a smaller in-domain synthetic dataset for the robotic grasp of transparent

objects. Inspired by their method of learning basic patterns in the first stage

and then transferring knowledge into the target real domain in the second

stage, we applied a two-stage training method that first pre-trains on a large

synthetic dataset and then fine-tunes the model on the smaller real dataset.

In the pre-training stage, the model learns typical patterns of the defects

formed in the composite sheet and the deformation of the sheet caused by

the movement of robots. By using our physics-informed simulator to simulate

the deformation of the composite sheet, we implicitly introduce the physical
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knowledge as a bias into a deep learning model. This helps the model under-

stand the generating process of a defect. In the fine-tuning stage, the model

learns task-specific knowledge of how the defects look in the real layup, which

includes additional noise originating from lighting conditions, robot actuation,

occlusions, etc.

Another way to mitigate the gap between the real and synthesized datasets is

to regard it as a multi-task problem where the model has to learn both the

physics-based behavior through the synthetic dataset and the expert knowl-

edge about the defects in the real world through the real dataset. We use

scaled mixing that entails training with each real image several times, whereas

training only once for each synthesized image. This is a technique that has

succeeded in training multilingual language models where there is a huge dis-

parity between the data set sizes of larger languages vs smaller languages; each

language is a subtask to learn. Instead of directly mixing real and synthetic

data, we replicate the real data k times before mixing (we use k = 5). Fur-

thermore, we combine this approach with a 2-stage training by applying scaled

mixing in the second stage. The performance and analysis of these training

techniques in our experiments will be discussed in Section 10.7.1.

10.7 Results

We evaluated our method on images acquired from a robotic composite layup

cell. Section 10.7.1 will discuss the experimental setting. We will also discuss

techniques to enhance our model (Section 10.7.2). The experimental results

are analyzed in Section 10.7.3. Finally, we also discuss failure cases where our

model failed to produce a successful prediction (Section 10.7.4).
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(a) (b)

(c) (d)

(e) (f)

Figure 10.12: Data augmentation methods. (a) Original image, (b) random
shift, rotation, or scale, (c) random brightness and contrast, (d) random
hue, saturation, value, (e) randomly shifted RGB values, and (f) random
blur.
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10.7.1 Training settings

The real dataset consists of 1,000 images, and the synthetic dataset has 10,000

images. We split the real dataset to 6:2:2 for training, validation, and test sets.

For models trained in 2 stages, we use the entire synthetic dataset for training

in the first stage, whereas we use the validation set of the real dataset for

model selection.

In both stages, we apply data augmentation techniques comprising random

shifts, rotations, and scalings of the images. Hence, before an image enters our

training pipeline, it will initially pass through the data augmentation pipeline.

With a probability of 0.5, the image is randomly transformed by shifting it

by a pixel amount uniformly sampled from U [−0.0625, 0.0625] for the x and

y axes, respectively. Subsequently, the image is rotated by an angle uniformly

sampled from [−45o, 45o], with a probability of 0.5. Finally, with a 0.5 proba-

bility, we scale the image by a factor uniformly sampled from [0.9, 1.1]. These

data augmentation methods largely expand the dataset size and introduce an

inductive bias whereby the patterns of the defects are invariant to the trans-

formations from the camera. This, in turn, helps the model learn more robust

representations. While our data augmentation pipeline is randomized, fixing

the random seed in our experiment ensures the reproducibility of the images

when re-running the experiment.

We employ the Intersection-over-Unification (IoU) area metric to evaluate the

accuracy of our deep network. This metric divides the area of intersection of

the predicted defect region and the ground truth region by the area of the

unified region. To define whether the output is considered accurate, we use

the common IoU threshold of 0.5, based on work done in the PASCAL Visual

Object Classes (VOC) challenge [276]. This means that a predicted defect
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with IoU larger than the threshold of 0.5 is considered positive, whereas an

IoU below 0.5 is regarded as negative.

We implemented our deep learning pipeline using the PyTorch framework

[277]. We trained 12 epochs for each stage and applied Stochastic Gradient

Descent (SGD) with a momentum of 0.9 and weight decay of 1e−4 to optimize

our model. The learning rate is 2e − 3. A step learning rate scheduler is

employed; hence, in the 8th and 11th epochs, the learning rate will be scaled

down by ×0.1.We also applied a linear learning rate warm-up for 5000 training

steps with a ratio of 1e− 5.

10.7.2 Model enhancement

Test mAP Train mAP
Def. Pre. Und. Avg. Gain Def. Pre. Und. Avg. Gain Mem. Inf. Train.

Base 0.938 0.832 0.9 0.89 - 0.938 0.821 0.875 0.878 - 4.4 GB 14.5 fps 0.5 hrs
+ Syn. data 0.944 0.865 0.925 0.911 2.4% 0.938 0.844 0.9 0.894 1.82% 4.4 GB 14.5 fps 5.5 hrs
+ 2-Stages 0.956 0.898 0.95 0.935 5.02% 0.949 0.868 0.917 0.911 3.80% 4.4 GB 14.5 fps 5.5 hrs
+ Scaled 0.977 0.932 0.975 0.961 8.02% 0.956 0.892 0.945 0.931 6.04% 4.4 GB 14.5 fps 7.5 hrs

+ Scaled 2-S. 0.987 0.945 1.0 0.977 9.81% 0.961 0.903 0.958 0.941 7.14% 4.4 GB 14.5 fps 12.5 hrs

More aug. 0.940 0.838 0.925 0.901 1.24% 0.939 0.830 0.942 0.904 2.92% 4.4 GB 14.5 fps 0.5 hrs
+ Scaled 2-S. 0.989 0.948 1.0 0.979 10.0% 0.966 0.912 0.967 0.948 8.01% 4.4 GB 14.5 fps 12.5 hrs

More layers 0.936 0.838 0.9 0.891 0.15% 0.942 0.833 0.875 0.883 1.01% 6.4 GB 11.7 fps 0.72 hrs
+ Scaled 2-S. 0.980 0.939 0.975 0.965 8.39% 0.960 0.9 0.942 0.934 6.38% 6.4 GB 11.7 fps 18 hrs

Cascade 0.942 0.847 0.925 0.905 1.65% 0.947 0.848 0.95 0.915 4.21% 6.0 GB 9.6 fps 0.6 hrs
+ Scaled 2-S. 0.990 0.947 1.0 0.979 10.0% 0.963 0.918 0.967 0.949 8.13% 6.0 GB 9.6 fps 15 hrs

ResNeSt 0.947 0.841 0.95 0.913 2.55% 0.950 0.845 0.95 0.915 4.21% 5.5 GB 13.3 fps 1 hrs
+ Scaled 2-S. 0.989 0.950 1.0 0.98 10.08% 0.965 0.913 0.975 0.951 8.31% 5.5 GB 13.3 fps 25 hrs

Table 10.2: Results of experiments. All gains are compared to the “Base”
model. Detailed interpretation is available in Section 10.7.3.

Apart from the experiments that explore the effectiveness of the training tech-

niques and the use of synthetic data, we performed additional experiments to

enhance our model. This helped us devise effective auxiliary schemes for our

application, as described next.

Advanced backbone network: We explored the use of the state-of-the-

art backbone network ResNeSt-50 [278], which is an advanced version of the
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ResNet backbone we used as the base model. ResNeSt-50 introduces channel-

wise attention to the different network branches of ResNet to better capture

cross-feature interactions and learn diverse representations. To analyze the

trade-off between the cost and accuracy improvement, we replace the ResNet-

50 network with ResNeSt-50.

Deeper model: We use a deeper backbone network, ResNet-101 to replace

the ResNet-50 network in this experiment. This helped us examine the cost

vs accuracy trade-off of using a deeper model.

Advanced model architecture: We apply a Cascade Mask R-CNN [279],

which improves the Mask R-CNN architecture by introducing a multi-stage

object detection architecture. This consists of a sequence of detectors trained

with increasing IoU thresholds to replace our basic Mask R-CNN architecture.

This helped us explore the trade-off between a more complex and advanced

architecture and accuracy improvement.

Additional data augmentation: We introduce additional data augmen-

tation techniques into the pipeline to explore the influence on model perfor-

mance due to this subsequent inductive bias. We include randomly changing

brightness and contrast with a factor uniformly sampled from [−0.2, 0.2] with a

probability of 0.2; randomly shifting RGB channel by pixels uniformly sampled

from [−10, 10] for each channel with a probability of 0.1; randomly changing

the hue, saturation and value of the input image with a quantity uniformly

sampled from [−20, 20], [−30, 30], and [−20, 20], respectively, by a probability

of 0.1; randomly shuffling the RGB channels by a probability of 0.1; and ran-

domly imposing blur with the kernel size uniformly sampled from [3, 7] with

a probability of 0.1. These data augmentation methods introduce inductive

biases such that the patterns of defects are invariant to the color of the carbon
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fiber sheet and the camera parameters. The data augmentation methods are

shown in Fig. 10.12.

10.7.3 Analysis of results

Figure 10.13: Model prediction examples. The orange rectangle marks the
predicted bounding box, the transparent cyan region represents the
predicted mask, and dark blue polygons denote the ground truth.

The results of our experiments are shown in Table 10.2. We compare the

performance of the mask R-CNN-based base model and the four model en-

hancements discussed in Section 10.7.3.

For each of the five variants, we first train them without synthetic data and

then demonstrate the improvement with synthetic data based on the best-

observed training techniques. The best training technique combines Scaled

mixing and 2-Stage training, denoted as “+ Scaled 2-S.”. The results show

that for all variants, the synthetic data gives a gain of about 8 to 10%.

In the first variant, we experimented with the base model denoted as “Base”

and performed ablation studies for training techniques. “+ Syn. data” denotes

directly mixing the real and synthetic data set. It provides only a nominal

increment of 2.4% compared to the model trained without synthetic data.

By introducing “2-Stages” training, the data imbalance problem is moderated.

However, this approach is still limited by the “catastrophic forgetting” problem.

This is reflected in the model trained with “Scaled” mixing, where the gain
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increases from 5.02% to 8.02%. Finally, by combining the two approaches, the

model achieved an overall gain of 9.81%.

The advanced data augmentation (“More aug.”) increased average mAP by

1.24% and slightly improved the trained model on synthesized data. Ad-

vanced backbone model ResNeSt-50 (“ResNeSt”) achieved the highest 10.08%

improvement, but the memory use increased to 5.5 GB while the inference

speed decreased to 13.3 fps, and training time increased to 25 hours. Cascade

architecture (“Cascade”) also achieved a higher mAP but increased the mem-

ory use to 6.0 GB. The inference speed decreased to 9.6 fps while the training

time increased to 15 hours. However, using this deeper model, ResNet-101

with 101 layers (“More layers”), the average test mAP gain for the model with

synthetic data decreased from 9.81% to 8.39%. This may be due to the over-

complexity of the model for our application. Memory usage increased to 6.4

GB, inference speed decreased to 11.7 fps, and training time increased to 18

hours.

The results show that our training techniques are effective. The augmentation

methods do improve the performance of model architectures such as the Cas-

cade architecture or the advanced backbone model. Additionally, advanced

data augmentation helps the model to generalize the dataset better. That

said, an upgrade to the model architecture incurs the cost of lowering the

computational efficiency. Due to our problem’s relatively lower complexity

compared to a general image segmentation model, which may contain millions

of samples, a highly complex model with too many layers eventually deterio-

rates the performance.

Overall, our method achieved the highest average test mAP of 0.98. A proper

choice of model complexity and the trade-off between higher performance due
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to advanced model architecture vs efficiency is important in real-world ap-

plications. Moreover, additional data and training “tricks” also require more

training time.

10.7.4 Analysis of failure cases

(a) (b)

(c) (d)

Figure 10.14: Failure cases. The orange rectangle and transparent cyan
regions mark the bounding box and mask predicted by the model,
respectively; the dark blue polygons denote human annotation. (a) False
positive (Unexpected region), (b) Confused region, (c) Redundant
prediction, (d) Annotation mistakes.

We further analyzed the test samples where the model failed to make satisfac-

tory predictions in the test set. We summarize these instances in the following

four cases, and recommend possible solutions.

Failure case 1: False Positives The model sometimes predicts an unex-

pected region; this happens very rarely. An example of this case is shown

in Fig. 10.14a, where the region on the left side predicted by the model is
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unexpected. This can be avoided simply by using model ensembling [280],

i.e., training multiple models and making predictions by voting. Although

deep learning models always have the risk of behaving unexpectedly, these

behaviors usually vary between models. Hence, by ensembling the results, the

weight of each unexpected prediction will be largely reduced, and thus, the

risk of predicting unexpected regions will be largely avoided.

Failure case 2: Confused Region The edge of the composite tool overlaps

with the wrinkle, making it hard to distinguish the defect and defect-free

region as shown in Fig. 10.14b. Such local features of the tool sometimes

make it difficult to locate the wrinkle when the defect lies in the vicinity

of these features. This is a less obvious case where the boundary between

defective and defect-free regions is overlapping. This could be attributed to

the high sensitivity of the model, which would try to catch all potential defects.

However, such sensitivity is preferred in our intended application, where a false

negative that potentially causes layup failure is more detrimental than a false

positive. The model may implicitly be imposed with such inductive biases by

the data annotation process. A high sensitivity may also be a possible cause

of the failure in case 2. Like case 1, model ensemble methods could also solve

this case.

Failure case 3: Redundant Prediction In this case, the same wrinkle

region is predicted multiple times, as shown in Fig. 10.14c. The upper wrinkle

has been marked by the model twice. Although reducing the test accuracy,

this case does not influence real-world applications, and we can merge the

predictions.

Failure case 4: Annotation mistakes Fig. 10.14d shows two examples

of such mistakes. The top annotation in the image is very small. Therefore,

a small perturbation of the model prediction will cause the IoU metric to
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recommend it as a failed prediction. However, the prediction is completely

acceptable in the actual application. The bottom annotation in the image is a

weak wrinkle missed by the model. It is an unexpected defect due to reusing

the same composite sheet several times during the real image collection pro-

cess. Furthermore, there might be some ambiguity amongst human annotators

as to whether to annotate such weak wrinkles as a defect or not. An improved

annotation and data collection procedure could easily handle these annotation

errors.

10.8 Summary

In this chapter, a physics-informed, deep learning-based framework for detect-

ing wrinkles and folds in sheet-like deformable objects using photo-realistic

synthetic data is presented. We demonstrated how combining a high-fidelity

physics-based simulation with advanced CGI rendering techniques enables the

generation of realistic training datasets for defect segmentation, which is crit-

ical for domains where large-scale real data collection is impractical.

This chapter presented a complete pipeline: simulating physically plausible

wrinkle formations, rendering them into high-quality images, and training a

Mask R-CNN model for instance-level segmentation of defects. By accurately

localizing every visible wrinkle or fold, the trained model empowers robotic

systems to sense the onset of defects and adapt their manipulation strategies

accordingly, enabling online failure recovery and enhancing process resilience.

The experiments validate the effectiveness of hybrid training, first pretraining

on synthetic images, then fine-tuning with a limited set of real-world process

data. This two-stage approach achieved a mean Average Precision (mAP) of

0.98 on real defect images, demonstrating that synthetic data, when generated
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with strong physical priors, can significantly boost model performance and

generalization.

Beyond achieving high segmentation accuracy, this chapter highlights sev-

eral broader contributions: (1) A physics-informed synthetic data generation

framework that captures realistic deformation behaviors, (2) A detailed CGI-

based methodology for generating photo-realistic textures and defect appear-

ances, (3) An ablation study identifying the most effective modeling and train-

ing strategies for defect detection, and (4) A rapid, scalable process for dataset

generation and model deployment in industrial settings.

The system developed here can be deployed online in production environments,

enabling real-time monitoring of composite layup or other sheet manipulation

processes. Such a robust and adaptive defect detection capability is essential

for improving process quality, reducing scrap rates, and ensuring the scalabil-

ity of robotic automation in high-performance manufacturing tasks. Beyond

the specific application of defect detection in composite layup, this work exem-

plifies a broader principle that runs throughout this dissertation: the fusion of

physics-based modeling with modern AI methods can enable scalable, robust,

and explainable solutions for deformable object manipulation. By grounding

deep learning in physical realism—through simulation, structured data gen-

eration, and task-informed model design—we can overcome the challenges of

data scarcity, uncertainty, and generalization that often limit the deployment

of learning-based robotics in industrial environments.
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Chapter 11

Conclusions

11.1 Intellectual Contributions

In this dissertation, we introduced a novel physics-informed learning paradigm

with the motivation to advance the field of robotic manipulation, specifically

for deformable objects in high-precision industrial environments. We intro-

duced a class of three deformable objects that are understudied, yet frequently

encountered in high-performance industrial environments: (1) a large-scale

sheet (2D), (2) a compliant tool (2D), and (3) a shell-like deformable package

(3D). We discussed how each of these objects demands a fresh perspective

for enabling robots to operate effectively in semi-structured and unstructured

environments, where deformability introduces significant complexity. To meet

these challenges, this dissertation proposes a structured framework that in-

tegrates physics-based priors into the key components of robotic intelligence:

simulation, planning, learning, and anomaly detection.

First, this dissertation demonstrates how simulation-based learning, with physics-

informed object models, enables accurate planning and robust anomaly detec-

tion for complex deformable objects. Second, it incorporates advanced learn-

ing frameworks to capture how tool compliance introduces highly non-linear

object dynamics—exemplified in industrial tasks like robotic screwdriving,
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thereby crafting models that are data-driven as well as physically explainable.

Third, the concept of task-informed physics constraints is introduced, which

illustrates how planning for large deformable sheets can explicitly account for

manufacturing process requirements. Lastly, this dissertation presents compo-

sitional learning frameworks that decompose complex robotic tasks—such as

bi-manual manipulation and multi-step task sequencing—into modular, learn-

able subtasks, promoting generalization, interpretability, and scalable policy

design.

Together, these ingredients form a blueprint for crafting robotic agents that

move closer to achieving human-level dexterity in deformable object manipu-

lation, while meeting the rigorous demands of industrial applications.

To summarize, the specific contributions of this dissertation are:

• Physics-informed Simulation for Complex Deformable Objects: Develop-

ment of structured simulation frameworks for large sheet-like objects and

closed-form packages, integrating real-world parameter estimation and

physics-based modeling.

• Task Sequencing Policies from Expert Knowledge: Introduction of meth-

ods to capture and model human expert task planning for deformable

object processes, incorporating both performance and effort-based pref-

erences through inverse reinforcement learning.

• Simulation-based Manipulation Planning: Creation of grasp planning

and manipulation strategies for precision tasks using simulation-guided

search, balancing task objectives and physical constraints.

• Compliance-aware Modeling for Manipulation Under Uncertainty: For-

mulation of physics-informed models for screwdriving under uncertainty,

demonstrating how active and passive compliance influences dynamic be-

havior and success rates.

260



• Physics-driven Synthetic Data for Anomaly Detection: Design of a hybrid

simulation and CGI framework to generate photo-realistic defect datasets

for training deep learning models for wrinkle and fold detection in sheet-

like objects.

Collectively, these contributions lay the foundation for a new paradigm in

robotic manipulation — one that bridges structured physical knowledge with

flexible learning models to achieve robustness, scalability, and safety in the

manipulation of complex deformable objects.

11.2 Anticipated Benefits

The cornerstone of this dissertation rests on a fundamental belief: robots will

profoundly transform human life, reshaping how we work, create, and live on

this planet. The ideas and methods proposed in this dissertation represent

a small but critical step toward this future, one where robots serve as col-

laborators, extending human capability across a wide spectrum of domains.

Deformable object manipulation is just one essential building block among

many that must be developed to realize this vision.

From both technical and societal perspectives, the anticipated benefits of this

work include:

• Explainability and Interpretability: The physics-informed learning paradigm

proposed here is built upon the principle that robotic decision-making

must be understandable and explainable. By grounding manipulation

policies in physical principles, this work ensures that robots can rea-

son about their actions in ways that are transparent and verifiable —

an essential requirement for building trust and ensuring safety at scale,

particularly in industrial deployments.
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• Economic upliftment with improved quality of life: Industries across man-

ufacturing, logistics, and assembly are experiencing an acute shortage of

labor willing to perform repetitive, strenuous, and hazardous tasks. Many

of these tasks involve deformable object manipulation under uncertainty,

where manual dexterity has historically been irreplaceable. This disserta-

tion lays a foundation for deploying robots to take over these physically

demanding tasks, fostering economic growth while allowing humans to

pursue more intellectually engaging, creative, and safer forms of work,

ultimately leading to a higher quality of life.

• Faster Deployment and Greater Adaptability: A major bottleneck in

traditional robotics has been the rigidity of preprogrammed systems,

which lack flexibility for high-mix, low-volume (HMLV) industrial en-

vironments. Meanwhile, purely data-driven learning systems have strug-

gled with generalization and robustness. By combining structured phys-

ical knowledge with learning, this dissertation proposes a solution that

accelerates robot deployment timelines and extends their adaptability

across a wide range of tasks, especially those involving complex, vari-

able deformable objects where conventional automation was previously

uneconomical.

• Technological Advancement Toward Human-like Learning: The physics-

informed learning framework introduced in this dissertation moves robotic

systems closer to human-like reasoning and modular learning. Much like

the human brain, where specialized modules interact to perform complex

tasks, the proposed compositional, physics-grounded architectures enable

robots to operate safely, learn effectively from limited data, generalize

across conditions, and recover from unexpected failures.
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Overall, the anticipated benefits of this research advance the broader field of

robotics toward a future where intelligent machines can adapt, collaborate,

and scale across real-world industrial applications, driving profound impacts

in automation, economic sustainability, and human well-being.

11.3 Future Directions

This dissertation represents only a small but meaningful step toward en-

abling robots to handle the complexity of deformable object manipulation

at human-level skill and adaptability. While the contributions here lay impor-

tant groundwork, many exciting avenues for future research remain, offering

opportunities to further advance toward the broader goal of building intelli-

gent, resilient, and explainable robotic systems.

Several key directions for future work include:

• Toward Unified World Models: This work lays a foundation for the devel-

opment of unified, compositional world models for robotics—models that

can seamlessly generalize across a wide variety of deformable materials

and their complex hybrid interactions. By embedding physics-based pri-

ors, such as energy conservation principles, accurate contact dynamics,

and explicit material parameters, into structured graph representations,

it becomes possible for a single model architecture to efficiently represent

diverse deformable object behaviors simply through adjustments in node-

level properties such as stiffness, damping, and elasticity. High-fidelity

FEM simulations, as described in Chapter 4, provide a practical means

for generating vast amounts of realistic synthetic trajectories, system-

atically covering the complete range of contact scenarios, deformation

modes, and inertial responses. This synthetic data can pre-train a Graph

Neural Dynamics backbone (Chapter 5), enabling it to internalize correct
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inductive biases before being fine-tuned with limited amounts of real-

world sensor data. Moreover, generative modeling frameworks grounded

in these physics-based priors offer an additional powerful avenue: they

can rapidly synthesize physically plausible scenarios or anticipate unseen

object behaviors and interactions. By conditioning generative models on

physically meaningful latent parameters, such as material stiffness or fric-

tion coefficients, robots can efficiently explore hypothetical scenarios, en-

abling anticipatory control and informed decision-making in dynamic en-

vironments. Crucially, the integration of an online parameter estimation

mechanism allows the model to continually refine these embedded ma-

terial properties during operation, facilitating rapid adaptation to novel

objects and evolving task conditions without requiring expensive retrain-

ing. Collectively, these strategies offer a robust, scalable pathway toward

flexible, accurate, and adaptive robotic manipulation of deformable and

hybrid objects.

• Learning Beyond Human Demonstrations: In industrial and real-world

applications, the ultimate potential of robotic manipulation lies not merely

in replicating human skills but in surpassing human limitations in speed,

precision, and reliability. The approaches introduced in this dissertation

provide stepping stones toward frameworks that not only capture essen-

tial human expertise through demonstration but also leverage structured

physical priors and constraints to autonomously optimize performance

beyond what humans typically achieve. Specifically, the inverse rein-

forcement learning-based sequencing method (Chapter 6) offers an initial

pathway for encoding and interpreting human preferences and rationales,

enabling robots to generalize sequencing behavior effectively across di-

verse tasks and geometries. By integrating these learned strategies with

accurate forward models of the object being manipulated (Chapter 3),

264



one can improve on this initial policy to better suit the robot’s embodi-

ment so that we can achieve optimal performance and generalize across

variations in objects and operating conditions.

• Learning Safe and Resilient Manipulation: In complex manipulation tasks

involving deformable and rigid objects, encountering unforeseen scenar-

ios is inevitable. Therefore, robotic systems must autonomously recog-

nize (as detailed in Chapter 10), diagnose, and recover from failures to

ensure reliability and resilience (Chapter 8). This dissertation demon-

strates that physics-informed dynamics modeling frameworks (Chapters

4 and 5), coupled with task policies learned through inverse reinforcement

learning and expert demonstrations (Chapter 6), offer powerful represen-

tations for anticipating and managing manipulation failures. Failures

such as grip loss due to excessive deformation or misalignment at con-

tact interfaces are fundamentally tied to the physical state of the system.

For instance, suction-based failures predominantly arise from deforma-

tion of the object at the suction–object interface. By utilizing the latent

space of dynamics models, which captures deformation patterns, force

distributions, and is grounded on material properties, robots can reli-

ably predict imminent failures. Furthermore, generative models incorpo-

rating physics-based priors can systematically synthesize diverse failure

scenarios, enriching the training dataset with realistic, challenging cases.

Policies trained in this manner can proactively anticipate and mitigate

potential failures, rather than merely react to them. Integrating latent-

space predictions with physics-informed generative modeling thus enables

robotic systems to autonomously detect early indicators of failure and ex-

ecute timely recovery actions. This unified approach provides a robust

framework for continual policy refinement, significantly enhancing the
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safety, reliability, and effectiveness of robotic manipulation in dynamic,

real-world environments.

• Expanding to a Broader Class of Deformable Objects: While this dis-

sertation addressed several complex and industrially relevant classes of

deformable objects, many deformable categories remain unexplored. Fu-

ture work could extend these methods to include irregular-shaped sheets

(e.g., automotive seat covers), materials with anisotropic and viscoelas-

tic properties, multi-layered composites, and even biological tissues, each

introducing new modeling, planning, and control challenges.

By addressing these future challenges, physics-informed learning could evolve

into a cornerstone technology, enabling the next generation of intelligent robotic

systems that operate safely, efficiently, and robustly in the dynamic, uncertain

worlds that define real industrial and everyday environments.
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