Physics-Informed AI Methods for Deformable Object Manipulation

Omey M. Manyar

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(MECHANICAL ENGINEERING)

May 2025

Copyright 2025 Omey M. Manyar

To my parents, Mr. Mohan Manyar and Mrs. Ankita Manyar, my late

Grandmother, Mrs. Ratnaprabha Desai, and my life partner, Dr. Jesal Shah.

i

Acknowledgements

I owe my deepest gratitude to my advisor, Dr. Satyandra K. Gupta, whose mentorship has
shaped my research and my personal growth. His generous guidance through countless
discussions, careful feedback, and unwavering support created an environment where I
could pursue ambitious ideas with confidence. Working in the USC Center for Advanced
Manufacturing under his leadership has been the highlight of my doctoral journey. I'd
also like to thank my dissertation committee, Dr. Mitul Luhar, Dr. Quan Nguyen,
and Dr. Stefanos Nikolaidis, for their expert insights and thoughtful critiques, which have
significantly strengthened this work. I also appreciate the financial support of USC Viterbi
(Graduate Fellowship) that helped me explore several interesting problems, the National
Science Foundation, and Amazon Robotics, all of which made my research possible. A
special note of appreciation to Shantanu Thakar, who guided me to be successful in
the professional aspects of my career. His guidance helped me secure multiple internship
experiences that were pivotal in my academic journey and that opened new avenues in my
work. Early in my PhD, Ariyan Kabir, Brual Shah, and Aniruddha Shembekar offered
crucial advice and encouragement that helped me learn new things quickly. I've been
fortunate to share this journey with outstanding peers in my lab—Zachary McNulty,
Rishi Malhan, Alec Kanyuck, Hantao Ye, Rutvik Patel, Jeon Ho Kang, Sarah Alhussaini,
Yeo Jung Yoon, Rishabh Shukla, and Abhay Negi—whose collaboration and camaraderie
made every challenge more rewarding. Apart from my peers, a lot of my friends who were
also my collaborators helped me through this — Neel Dhanaraj, Jaineel Desai, Shahwaz
Khan, Akshay Deshmukh, and many more. To my family: my father, Mohan, and my

mother, Ankita, whose guidance and encouragement has been crucial in achieving this;

il

my late grandmother, Mrs. Ratnaprabha Desai, for her enduring love; and my partner,
Dr. Jesal Shah, whose steadfast support and belief in me have carried me through every

obstacle—thank you. Your faith in my work has been my greatest source of inspiration.

v

Table of Contents

Dedication e ii

Acknowledgements e iii

List of Tables ix

List of Figures e xi

Abstract L xxi

Chapter 1: Introduction 1

1.1 Background 1

1.2 Motivation 2

1.3 Research Issues L 4

1.4 Objectives and Scope 7

Chapter 2: Foundations and Overview 9

2.1 Taxonomy of Deformable Objects 9

2.2 Physics-Informed Learning Paradigm 11

2.3 Overview and Structure 13
Chapter 3: Learning Simulation Parameters for Large, Sheet-like De-

formable Objectso 17

3.1 Imtroduction 17

3.2 Related Worko 20

3.3 Simulation Model Description, 21

3.3.1 Tensile and Shear Forces 22

3.3.2 Bending Forces o 25

3.4 Estimating Sheet Parameters 26

3.4.1 Overview 26

3.4.2 Acquisition of Training and Testing Data 28

3.4.2.1 Sheet Preparation, 30

3.4.2.2 Sheet Deformation Data Generation 31

3.4.3 Model Parameter Estimation 32

3.4.3.1 Sheet Simulation System 32

3.4.3.2 Parameter Boundary Selection 35

3.4.3.3 Optimization Algorithm 36

3.5 Results. 37

3.5.1 Experimental Specifics 0oL 37

3.5.2 Sheet Parameter Estimation, 39

3.5.3 Sheet Simulationo oo 45

3.6 Summary 47

Chapter 4: High-Fidelity Simulation of Shell-Like Deformable Objects

Using FEM 49
4.1 Introduction 49
4.2 Related Works 55
4.2.1 Deformable Object Simulation 55
4.2.2 System Identification and Policy Learning 56
4.3 Problem Formulation Y
4.4 Methodology 59
4.4.1 Overview e e 59
4.4.2 System Representation 60
4.4.3 Simulation Framework 62
4.4.4 Real-to-Sim Parameter Identification 66
4.5 Manipulation Policy Learning 70
4.6 Experiments and Data Collection 72
4.6.1 Experimental Design 0oL 72
4.6.2 Processing of Motion Capture Data 75
4.7 Results. o 78
4.7.1 Parameter Estimation Results 79
4.7.2 Optimization Performance Analysis 80
4.7.3 Simulation Performance Metrics. 82
4.8 DiISCussSions 84
4.9 Summary 86
Chapter 5: Graph-Based Neural Dynamics of Shell-Like Deformable Ob-
jects . . e 88
5.1 Introduction 88
5.2 Related Works 91
5.3 Graph-based Representation 92
5.4 Message Passing Overview oL 93
5.5 Graph-based Neural Dynamics Model 96
55.1 Node Encoder 98
5.5.2 Edge Encoder 99
5.5.3 Global Encoder 100
5.5.4 Dynamics Decoder L 101
5.5.5 Model-Training 103
5.6 Experimentso 105
5.7 Results. 106
5.8 Summary 109
Chapter 6: Learning Task Sequencing Policies for Deformable Object
Manipulation 111
6.1 Introduction 111
6.2 Related Work 114
6.3 Problem Formulation 116
6.4 Method e 120
6.4.1 Estimating Feature Interaction Coverage 120
6.4.2 Graph-based State Sequence Representation 121

vi

6.4.3 Loss function for performance-based preferences 122

6.4.4 Learning performance-based preference 123
6.4.5 Learning Effort-based Preference 125
6.5 Data Collection 126
6.6 Results. 127
6.7 Summary e 130
Chapter 7: Simulation-based Grasp Planning for Deformable Objects . . 132
7.1 Introduction 132
7.2 Related Work 135
7.3 Problem Formulation o000 136
7.4 Grasp Planning 141
7.4.1 State Space Discretization 141
7.4.2 Bounding the Search Space 142
7.4.3 Graph Construction 144
7.4.4 Grasp Plan Generation L. 145
7.4.5 Results on Representative Examples 146
7.5 Intervention Controller 148
7.5.1 Overview 148
7.5.2 Constraint Violation Monitoring 149
7.5.3 Control Actions 149
754 Results 151
7.6 Summary 153
Chapter 8: Learning the Effect of Compliance on Manipulation under
Uncertainty 155
8.1 Imtroduction 155
8.2 Background 159
8.3 Related Work 161
8.3.1 Robotics and Automation in Screwdriving 161
8.3.2 Defect Detection for Screwdriving Operations 163
8.3.3 Dynamics Modeling for Screw-tip Motion 164
8.4 System Overview 166
8.4.1 Mobile-Manipulator-based Robotic Screwdriving System 166
8.4.2 Software System Architecture 168
8.4.2.1 Planning and Control 168
8.4.2.2 Perception and Sensing 170
8.4.3 System Operation 0. 170
8.5 Physics-Informed Discovery of Screw Tip Dynamics 172
8.5.1 Model Definition 175
8.6 Failure Mode Detection 178
8.6.1 Data Augmentation and Pre-processing 181
8.6.2 Feature Extraction 0oL 183
8.6.3 Decision Tree-based Defect Detection 184
8.7 Experiments and Results 185
8.7.1 Experimental Setup and Test Parts 185
8.7.2 Dynamics Model Evaluation 188

vil

8.7.3 Predicting Time to Completion with Dynamics Model 192

8.7.4 Failure Detection Results 193

8.8 Summary 197
Chapter 9: Bi-manual Manipulation for Shell-like Deformable Objects . 199
9.1 Imtroduction 199
9.2 Related Work 203
9.3 Bimanual Robot Setup for Packaging 204
9.4 Problem Formulation 206
9.5 Approach 207
9.5.1 Packaging Pipeline as a Finite State Machine (FSM) 207
9.5.2 Learning Packing Score Function 210
9.5.3 Learning Optimal Robot Actions 212

9.6 Experiments. e 213
9.6.1 Real-World Experiments 213
9.6.2 Simulation Experiments o0 216

9.7 Results. 216
9.7.1 Failure State Estimation and Packing Score Predictions on Real Data216
9.7.2 Action Prediction Performance 219
9.7.3 Bin-packing Performance: L. 219
9.7.4 Sensitivity Analysis: oo 220
9.7.5 Simulation Results: 221

9.8 Summary 223
Chapter 10: Anomaly and Failure Detection for Deformable Objects . . . 225
10.1 Introduction 225
10.2 Overview of Approach 230
10.3 Real Image Collection 232
10.4 Synthetic Image Generation L. 235
10.4.1 Physics Based Simulatoro 0oL 235
10.4.2 Data sampling 236
10.4.3 CGI Pipeline 237

10.5 Data Preparation L 244
10.6 Model Description 245
10.6.1 Model Architecture and Settings 245
10.6.2 Training Lo 246

10.7 Results o L 248
10.7.1 Training settings L o 250
10.7.2 Model enhancement L L Lo 251
10.7.3 Analysisof results 253
10.7.4 Analysis of failure cases L. 255

10.8 Summary 257
Chapter 11:Conclusions 259
11.1 Imtellectual Contributions 259
11.2 Anticipated Benefits o 261
11.3 Future Directions L 263
References 267

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
4.1

4.2

5.1

6.1

Settings used on the Hexagon RS5 laser scanner 29
Accuracy Specifications for Laser Scanner and Contact Probe 29
Elastic Material Measurements 39
Viscoelastic Material Specifications 39
Fabric Material Training Data 40
Material Testing Data o 40
Composite Training and Testing Data. 42
Initial Optimizer Parameters 43

The performance of the parameter estimation framework. The error values
reported here are the chamfer distance of package state and mean-square
error in object state prediction in meters. 80

Effect of particle count on simulation parameters and frame rate. The
prediction performance depends on the number of particles. Our simulation
runs in real-time, meaning it takes ¢ seconds to simulate a trajectory of
duration t seconds. We can see that increasing the number of particles
improves the loss without affecting the FPS. However, FPS remains the
same. Increasing the number of particles can cause issues with available
GPU memory. 83

Comparison of prediction errors for our Graph Neural Dynamics (GND)
model versus the FEM-based simulator from Chapter 4. GND consistently
yields lower mean and max errors for both package deformation and inter-
nal object motion, demonstrating more reliable rigid—deformable coupling.
Occasional spikes in the maximum error primarily correspond to test frames
with missing motion-capture markers. 107

Set of Tools means a subset of the 10 tools from Dy,,,. The first column is
for all the Dy, tools. We can see as we vary the dataset, p value changes,
indicating varying feature interaction coverage. For more info on tools:
website e 129

1X

https://sites.google.com/usc.edu/irlfortasksequencing

7.1

8.1

8.2

8.3

9.1

9.2

9.3

9.4

9.5

10.1
10.2

Grasp Planner Results

Comparison of SINDy model with LSTM and MLP for predicting screw-tip
dynamics. These numbers are reported on a rollout of the model for a time
horizon of 5 seconds on our held-out testing trajectories. What we observe
is that even though the loss for LSTMs and NNs is low, the divergence is
significant, leading to poor predictions beyond a couple of timesteps.

Distribution of Trials for Training and Testing. Training data is collected on
the flat panel with threaded inserts while testing is performed by executing
a screwdriving operation on 10 real-world parts.

Test Accuracy and Classification Report. Classes 0,1,2,3,4 are the same as
in the order they appear in the columns of Fig. 813

The packing score prediction model’s performance, evaluated with 5-fold
cross-validation, shows that the model pre-trained on simulation data out-

191

195

195

performs others across all metrics, reducing the maximum error by 46-48% 215

The performance of the action prediction framework in predicting bin pack-
ing score during online execution. The mean packing score during these
trials was 0.88 for score 1 and 0.91 for score 2

Our approach outperforms random and heuristic-based approaches with a
high final packing score of 0.91

Effect of adding noise in the actions computed by the optimizer. Here, a
50% change in action values corresponds to 2 cms in position values and
10° in orientation values, respectively. o oL

Performance of Sim vs Real in computing packing scores by recreating
scenarios encountered in test data. The errors >0.2 occur in only 0.5%

cases. However, all the failure cases are captured robustly with a low error.

Parameters and their distribution in data sampling.

Results of experiments. All gains are compared to the “Base” model. De-
tailed interpretation is available in Section 10.7.3.

218

220

220

223

251

List of Figures

1.1

2.1

2.2

2.3

3.1

3.2

3.3

Industrial tasks involving manipulation of deformable objects.

The three representative classes of deformable objects studied in this dis-
sertation. Each class presents distinct challenges across modeling, task
planning, manipulation, and failure detection, highlighting the need for

tailored, physics-informed strategies to enable effective robotic manipulation.

The four key physics-informed learning paradigms explored in this disserta-
tion. These ingredients—simulation-based learning, advanced learning to
enable structured dynamics modeling, physics-guided constraint learning
for optimization, and compositional learning—can be applied individually
or in combination to enable robots to effectively manipulate the complex
deformable objects studied in this work.

A structured overview of the contributions presented in this dissertation,
organized across two axes: the class of deformable object (sheets, tools,
packages) and the technological components (simulation, planning, exe-
cution, anomaly detection). Each marked cell represents a contribution
where physics-informed strategies, such as simulation-based learning, ad-
vanced learning frameworks, constraint-aware planning, and compositional
learning, were employed to address the challenges of manipulating complex
deformable objects.

Left: the simulated prepreg under external forces and constraints. Right:
the current robotic cell with two Kuka iiwa R7 robots and one Kuka iiwa
R14 robot.

Undeformed(left) and Deformed(right) states of a triangle in the mesh rep-
resenting the sheet. The warp and weft vectors V and U are used to
compute the tensile and shear strains.

(Left) Two adjacent triangles in the mesh and the bending angle 6 between
them. (Right) Three neighboring triangles for a triangle under considera-
tion are shown. L

9

X1

3.4

3.5

3.6
3.7

3.8

3.9
3.10

3.11
3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

Process Overview: The initial state of the sheet is defined as the sheet con-
figuration under initial boundary conditions. The releasing/released sheet
state is defined as the sheet behavior after releasing one of the boundary
conditions. After conducting physical experiments, initial mesh and ob-
served data in the form of a mesh of the sheet are obtained from two sheet
states, respectively. The data is further fed to the optimizer to acquire
computed parameters. Lo

(A) Romer Absolute Arm, (B) Laser Scanner, (C) Contact Probe, and (D)
Contact probe variety

Sheets were prepared by attaching 289 quarter-inch markers to each sheet

Clamps fixed the sheet configuration at four points. This is defined as the
initial state. Lo

(A) Labeled sequence of stages depicting sheet position movements during
onetrial

Point cloud clusters (left) vs single point vertices (right) on one sheet . . .

Simulation Process Overview: The simulator used the material parameters

and mesh information to predict sheet behavior under specified conditions.

Input-Output Diagram for Parameter Boundary Selection.
Parameter Optimization Process.

Sheets used for four material samples. Left: Elastic Fabric Materials.
Right: Viscoelastic Prepreg Material.

Trial 1 Stage 5 Results of Felt Sheet: (Upper) Observed Position Image,
(Middle) Generated Mesh, and (Lower) Simulated Mesh.

Trial 1 Stage 5 Results of Cloth Sheet: (Upper) Observed Position Image,
(Middle) Generated Mesh, and (Lower) Simulated Mesh

Trial 1 Stage 5 Results of Canvas Sheet: (Upper) Observed Position Image,
(Middle) Generated Mesh, and (Lower) Simulated Mesh

Trial 1 Stage 1 Results of Composite Sheet: (Upper) Observed Position
Image, (Middle) Generated Mesh, and (Lower) Simulated Mesh.

Trial 1 Stage 5 Results of Composite Sheet: (Upper) Observed Position
Image, (Middle) Generated Mesh, and (Lower) Simulated Mesh.

Real-time sheet simulation result: The first row shows the predicted mesh
from the simulator. The second row shows the actual behavior of the com-
posite sheet. L

Real-time sheet simulation process.

38

xil

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

Examples of deformable packages made from various materials used in
the fulfillment industry. The internal object, a tablet in this case, is en-
closed within the package, demonstrating the challenge of handling such
deformable structures.

Example of a robotic cell using a suction-based tool to pick and place a
deformable package into a bin, where failures can occur at any stage of the
PTOCESS. .« « v v v v e e e e e e

Illustration of three failure modes in package handling, primarily caused by
wrinkles from package deformation and the dynamic motion of the internal
objecto

Overview of our proposed simulation parameter identification framework.
As depicted, we have a real-world data collection phase, where we collect
a set of robot trajectories and observe package deformation and object
dynamics. Then we learn the corresponding parameters for our simulation
to generate the model of our system.

System Representation Overview: Each element of the package and suction
cup is modeled using particles connected by edges to simulate elasticity and
bending. Additionally, particle radius accounts for adhesion and compres-
sion in the deformable components. L.

The simulation of the deformable package, suction cup, and internal object
in our proposed simulation environment

The experimental setup with a 7 DOF kuka LBR iiwa Robot. A suction
tool is attached to the robot that is connected to a 9 CFM vacuum pump.
The suction cups selected in this task are rated to handle such objects
specificallyo

The package and the corresponding inside object with the motion cap-
ture markers. We also illustrate a sample trajectory that is collected from
the motion capture. We can observe that at certain time instances, the
package markers can disappear, thus entailing the adoption of advanced
data-processing methods.o

Qualitative comparison of simulation vs. real-world predictions. Blue
markers represent simulated positions at a given time step, while green
markers indicate corresponding real-world positions from our test dataset.
The coordinate axes near the markers denote simulated and real object
positions, with the topmost axis representing the tool frame.

The marker prediction discrepancies are primarily at the edges, while ac-
curacy remains high near the suction cups, a critical region for failure de-
tection. This demonstrates that our parameter estimation is well-suited
for computing safe and efficient trajectories, as most errors do not impact
performance.

xiil

4.11 Difference in package shape in simulation with reducing the number of
particles. We can see that fewer particles can lead to poor performance in
capturing the package deformation.

5.1 Accurate initialization in the FEM-based simulation can be challenging.
Since the simulator solves for the complex interactions, the initial state
of the package and the object can have uncertainty associated with them,
which can propagate as an error for a given trajectory.

5.2 Graph-based representation of the suction-package-object system. Nodes
represent the deformable suction cup, thin-shell package, and rigid internal
object. Edges encode both intra-entity relationships (within the suction
cup or package) and inter-entity interactions (between suction cup—package
and package—internal object), effectively capturing the complex spatial and
dynamic relationships within the system.

5.3 Overview of the graph message-passing framework used to capture complex
interactions among the suction cup, package, and internal object. Node-
level, edge-level, and global-level attributes are embedded and propagated
through successive message-passing layers to model both local and system-
wide dynamics. The output of these message passing layers is latent rep-
resentations of the node, edge, and global embeddings, which can then be
further passed to a decoder for downstream dynamics predictions.

5.4 Graph-based neural dynamics overview: given node, edge, and global at-
tributes, the model uses successive message-passing layers to generate la-
tent embeddings and predict the system’s forward dynamics for the coupled
suction-package-object network. The latent embeddings from the message
passing layers are then passed to a multi-head decoder that predicts the
forward dynamics of the internal object and the package, respectively.

5.5 Node-level encoder architecture: for each node, the encoder network in-
gests its spatial coordinates (expressed in the end—effector frame to preserve
SE(3) equivariance) along with a learned material embedding derived from
its deformability flag (0 = rigid, 1 = deformable) and entity type (0 = suc-
tion, 1 = package, 2 = object). The MLP applies these inputs to produce a
compact node embedding that seeds the subsequent message-passing layers.

5.6 Edge-level encoder architecture: each edge’s encoder ingests the source and
target node IDs alongside their Euclidean distance that preserves SE(3)
equivariance, and an edge-type identifier that specifies whether the connec-
tion is rigid—deformable, deformable—deformable, or intra-entity. An MLP
then combines these inputs into a rich edge embedding.

5.7 Global-level encoder architecture: embeds system-wide attributes—including
package and object mass and dimensions—alongside external control inputs
(end-effector position, orientation, velocity, and acceleration) into a unified
global context vector for downstream dynamics prediction.

96

98

Xiv

5.8 Multi-head decoder architecture: two specialized decoder heads jointly pre-
dict the coupled dynamics of the internal object and the deformable pack-
age. The object head consumes only the object’s node embeddings plus
the global context to forecast rigid-body motion, while the package head
processes all package node embeddings alongside the same global vector to
predict continuous deformations. Together, they capture the interdepen-
dent behavior of both subsystems.

5.9 Shape-retention under low dynamic loads: when the end-effector’s orienta-
tion and acceleration remain minimal (up to 2 s), the package maintains its
initial shell shape. Once orientation changes intensify and acceleration in-
creases, combined with internal object motion and suction-cup compliance,
the package visibly deforms.

5.10 The three different classes of package size, object size, and object mass.

5.11 Qualitative comparison of predicted versus ground-truth trajectories for
both package deformation and internal object motion under high end-
effector orientation. The Graph Neural Dynamics model closely tracks
the true deformations and rigid-body movements, demonstrating robust
performance even in challenging configurations.

5.12 Worst-case error scenario for package deformation: the largest discrepan-
cies between predicted and actual meshes occur at the sheet’s far edges,
while the region near the suction cup, critical for grip stability, remains
accurately modeled. This indicates that even under high-error conditions,
the model’s predictions in the failure-critical zone are reliable enough for
robust trajectory planning. oo oL

6.1 Example processes that require human-to-robot skill transfer.
6.2 Overview of the proposed framework for learning task sequencing policy.

6.3 Two tools are selected from D,..qfor collecting human motion data, and
then the robot performs the same process. The tool on the left is used for
training, and the tool on the right is used for testing.

6.4 In the absence of the a term, other sequences were not appropriately scaled
despite £* being the lowest cost. The 8 term scaled the minimum cost data
points properly after iterative updates, as seen from the shift in cost of red
dots in Update Number 1 and 2. The v term required more update steps
for convergence. The y-axis violations represent the number of training
demonstrations where the desired sequence was not the lowest cost.

128

6.5 Note that C'(§) is normalized. Also we scale the costs such that 7 for £* is 0.129

7.1 A composite sheet layup cell consisting of three robots and one human. . .

132

XV

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

8.1

8.2

(a) Definition of draping zones on the Mold, (b) Definition of corresponding
draping zones on the Prepreg Sheet.

(a) Potential Grasping Location with corresponding {®, ¥} & (b) State
Space Representation of the sheet

The Prepreg P is divided into different sections. Py: Draped Section, Pi:
section about to Be Draped, P»: Left Undraped section, P;3: Front Un-
draped section, P,: Right Undraped section, ag, b3: Characteristic length
and width of the section with index 3.

Grasp Planner Search Graph. wf" is one of the feasible states at i = 1 and
t21 is time taken to travel from node whtowdo

Overall Process Flow for Grasp Planning.

Grasping positions for the 9 draping zones in simulation and physical setup
for Part A.

The three molds on which the grasp planner was tested. These molds vary
in terms of the complexity of surface features and the draping strategy. . .

Process flow of Constraint Monitoring Method.
Process flow of our Intervention Controller.

Comparison between different cases for material parameter model. Row
1 depicts the simulated data for the four control action cases, and Row 2
depicts the Real Sheet Configuration of the corresponding data.

Examples of HMLV settings where screwdriving is performed routinely
in non-gravity assisted scenarios and tight spaces. Image Courtesy: (a)
https://nanoavionics.com, (b) https://blog.satair.com, (c)https://
assemblymag.com Lo

The Proposed mobile screwdriving system performing servicing operation.
The image from the in-hand camera on the bottom left corner shows how
the screw is offset on initial contact. The reader is advised to review the
video at Video Link for better understanding

xXvi

https://nanoavionics.com
https://blog.satair.com
https://assemblymag.com
https://assemblymag.com
https://youtu.be/W0S4tSSkWQQ?si=Zs8IKlditNQvKWKx

8.3

8.4

8.5

8.6

8.7

8.8

(a) Compliance in the screwdriving tool. Here, K is the stiffness, and
C is the damping parameter. For the tool, there is compliance even in
the torsional direction, as shown in (b) Compliance in the Agent due to
impedance control. The robot’s end-effector acts as a virtual spring-mass
damper system. Here, Koo 18 the stiffness and Cropor is the damping.
(c) Motion Band Traced by Screw-tip, due to interaction between the com-
pliances. Chances of success are high when this band passes through the
hole’s attractor basin, (d) Time snapshots of screw tip motion depict how
screwdriving can be successful even in the presence of significant hole offset.
At t3, the screw tip enters the hole’s attractor basin, initiating the align-
ment process. The robot’s active compliance then facilitates correction,
ensuring smooth and successful insertion despite initial misalignment. . . .

Hardware System Components of the mobile manipulation-based screw-
driving system.

We demonstrate how our dynamics model and defect detection module aid
in decision-making for our system. Here we depict the entire process flow
from the start (screw pick-up) till the end (insertion) for our system. The
Numbered Blocks at the top are nominal operation modes. At every stage,
the defect detection module evaluates if a failure has occurred or not. If
failure occurs due to time elapse (Input 4), then a reattempt strategy is
triggered, or else we call for human help.

Screw-tip Dynamics Model that takes the state information, impedance
control parameters, and robot orientation as input. The model predicts the
first-order time derivatives, i.e., the velocity of the screw-tip in Cartesian
space, in the robot’s base frame of reference. We achieve this by first
converting the screw-tip coordinates from image space to camera frame
and then to base frame. L

The four different failure modes studied in this work. We can observe that
for each of them, the wrench signals have distinctive characteristics.

Variation in Wrench Signals Across Different Screw Types and Orienta-
tions. This figure illustrates how wrench signals vary when performing
screwdriving operations on different parts, screw types, and orientations.
Note that these wrench signals were recorded for a successful screwdriv-
ing insertion for the fairness of comparison. Notably, while the f, signal
exhibits similar overall characteristics, we observe shifts in sign, gradient,
and distinct variations in other force and torque signals during both the in-
sertion and tightening phases. These variations highlight the challenges of
directly applying prior methods and underscore the need for a more adapt-
able approach—as proposed in our work-to ensure robustness in high-mix,
low-volume (HMLV) manufacturing.

160

177

8.9

8.10

8.11

8.12

8.13

8.14

9.1

9.2

9.3

The experimental setup serves as a testbed for data collection for our dy-
namics model, failure detection model, and for performing screw-driving
trials. (a) Depict the panel at an orientation that can be adjusted by two
actuators on each end, (b) Depicts the in-hand camera’s RGB images used
to detect the colored screw-tip, and (c¢) Shows our trials for failure-mode
detection, with all the parts mounted on the panel at an orientation . . . 186

Left: The three Screw Types (M4, M5, and M6) used for the trials and
Right: The ten test parts selected for performing screwdriving trials. Each
of them has a different geometrical complexity, size, and shape, and they are
representative of different industrial settings (E.g., Electrical Components,
Automobile Parts, Refrigerator Parts, etc.). Furthermore each of them have
different screw types and at different orientations to simulate a realistic

HMLV scenario 187

The Predicted vs Ground truth for screw-tip motion. Here the predictions
are for all three screw types used in our study. The model predicts velocity
X. However, we also compute the cartesian trajectory of the screw tip
given an initial state. We can see all our predictions are within the green
zone, which signifies a 1 mm deviation for the screw tip from the reference
trajectory. Also, if we observe closely, our predicted characteristics follow
the ground truth characteristics of the screw-tip motion. This underscores
the robustness of SINDy in modeling such highly nonlinear dynamics. . . 189

The Predicted vs Ground truth time to insertion for a given offset of the
screw-tip. This data is collected during our experiments when we keep the
screwdriving tool rpm at a fixed value of 600 rpm 192

Left: The confusion matrix for our validation dataset collected on a flat
panel with an Fl-score of 0.94. Right: We perform classification on test-
ing data collected on our 10 different parts, where our model accurately
classifies all modes of failure as shown in the figure 194

The learned decision tree for the five classes (modes) of operation. This fig-
ure is auto-generated using sci-kit learn graphviz functionality and depicts
how the decision tree is performing the splits. 196

(a)The deformable packages studied in this work. (b)The proposed biman-
ual cell. The in-bin robot stays inside the bin during the packing process,
while the pick-place robot transports and places packages inside the bin. . 200

Overview of the entire pick-and-place pipeline with the bimanual robotic cell.205
The pick and place pipeline for bin-packing is represented as a simplified

FSM due to its sequential nature. Such representation guides the system’s
high-level actions. 208

9.4

9.5

9.6

9.7

9.8

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

Left: Our entire model and real-time optimization pipeline to compute
optimal actions that maximize the packing score. Packing score prediction
functions are modeled with a Multi-Layer Perceptron (MLP). Right: The
packing score representation and bin state definition. Definitions remain
the same for computing both packing score 1 and packing score 2

Simulated and real data generation for model training. We replicate the
setup in MuJoCo with deformable packages

The raw point cloud and the corresponding processed point clouds used for
bin state and packing score computation. Process for computing packing
score 1 & 2isthesame

Intermediate dropping and sweeping performances of the system achieving
high-quality bins. We also demonstrate the bin packing instances when
scores were lower than 0.8.

The comparison between the real world and the corresponding simulation
scenario, depicting the effectiveness of simulation to capture the essence of
package characteristics Lo

Variation in the wrinkles formed during prepreg composite layup

Comparing Synthetic Images with the Real Images. Note: The images
shown here are for representative purposes only. They do not correlate in
terms of visual appearance.

Process flow describing the system.

The two types of wrinkles witnessed during composite layup. (a) The wrin-
kles formed on a conformed/draped portion of the sheet; (b) an anomalous
region on the undraped portion of the sheet that signifies the onset of a
wrinkle.

The black-and-white tiled matte indicates the fiber direction of the syn-
thetic texture.

Left: zoom on the CG texture. Right: photo of real carbon fiber under a
microscope (Visual Appearance may differ due to the scale).

A collection of images at different exposures (top) was compiled to create
a 360° panoramic HDRI (bottom).

The virtual environment.

(a) Trajectory of the four holding points; (b) the shape after executing the
trajectory in our physical-based simulator; (c¢) output mesh before render-
ing; (d) the CGI-rendered mesh.

218

231

Xix

10.10Annotations depicting the Type 1 and Type 2 defects. Kindly note that
both Type 1 and Type 2 Defects are annotated as one single class “Wrinkle” 244

10.11Mask R-CNN architecture. 245

10.12Data augmentation methods. (a) Original image, (b) random shift, rota-
tion, or scale, (¢) random brightness and contrast, (d) random hue, satu-
ration, value, (e) randomly shifted RGB values, and (f) random blur. . . . 249

10.13Model prediction examples. The orange rectangle marks the predicted
bounding box, the transparent cyan region represents the predicted mask,
and dark blue polygons denote the ground truth. 253

10.14Failure cases. The orange rectangle and transparent cyan regions mark the
bounding box and mask predicted by the model, respectively; the dark blue
polygons denote human annotation. (a) False positive (Unexpected region),
(b) Confused region, (c) Redundant prediction, (d) Annotation mistakes. 255

XX

Abstract

Deformable objects are an integral part of the world we inhabit, characterized by complex,
nonlinear behavior under external forces and constraints. Nearly every object humans in-
teract with exhibits some degree of deformability, and our ability to intuitively model
and manipulate such objects has been a cornerstone of human dexterity across daily life
and industrial tasks alike. Deformable materials play a crucial role in manufacturing,
logistics, and assembly processes that power high-performance sectors such as aerospace,
fulfillment, automotive, textiles, etc. Yet, despite their prevalence, many of these pro-
cesses remain predominantly manual without large-scale integration of intelligent robots,
primarily due to the inherent challenges of manipulating deformable objects with the

precision, repeatability, and quality demanded in industrial environments.

Amidst a sharp decline in the availability of skilled labor willing to perform such phys-
ically demanding tasks, the industry faces an urgent need to deploy intelligent robotic
systems that can handle deformable objects with the same resilience and adaptability
as humans. This dissertation addresses this challenge by enabling robotic manipulation
of complex deformable objects in semi-structured, high-variability environments, with a
focus on large-scale, industrially relevant objects exhibiting intricate dynamics and high-
speed interactions. Moving beyond simplified 1D and 2D cases, this work aims to tackle
the nuanced realities of a new class of complex industrial deformable objects that de-
mand precision, safety, and resilience—attributes essential for large-scale robot adoption

in manufacturing, assembly, and logistics.

A fundamental advance proposed in this dissertation is the introduction of a physics-

informed learning paradigm for robotic manipulation of deformable objects. The central

xx1

perspective is that purely data-driven approaches struggle to generalize in high-mix, low-
volume (HMLV) industrial settings where exhaustive data collection is impractical. In
contrast, integrating structured physics knowledge into learning pipelines significantly
improves generalization, reduces data requirements, and enhances model interpretabil-
ity and safety. To this end, the dissertation introduces physics-informed methods for:
(i) learning simulation parameters for large deformable sheets, (ii) sequencing complex
manufacturing tasks by capturing expert human preferences, (iii) planning manipulation
actions using simulation-based grasp planning for precision draping, (iv) modeling the
effect of tool compliance on manipulation under uncertainty, and (v) detecting failures in
deformable object processes using simulation-augmented deep learning.

The framework is structured around four core pillars: (i) Simulation-based Learning,
(ii) Advanced Learning Frameworks, (iii) Learning Physics-informed Constraints, and (iv)
Compositional Learning. Together, these ingredients form a systematic strategy for en-
dowing robots with the ability to reason about the physical consequences of their actions,
enabling safe, adaptive, and reliable operation in high-performance industrial tasks in-
volving deformable objects.

Through extensive real-world experiments—including composite sheet layup, precision
screwdriving under uncertainty, online defect detection in manufacturing, and bimanual
bin-packing of deformable packages- this dissertation demonstrates that physics-informed
learning provides a critical pathway toward safer, more robust, and scalable robotic sys-
tems for manipulating deformable objects. By marrying the flexibility of learning with the
structure of physics principles, this work takes a significant step toward the widespread
deployment of intelligent robots capable of manipulating complex deformable objects in

unstructured, real-world industrial environments.

xxil

Chapter 1

Introduction

“The behavior of soft materials resists simplification — not because they defy

physics, but because they embody so much of it.”

— Inspired by the work of Nobel Laureate Pierre-Gilles De Gennes

1.1 Background

For times immemorial, scientists and engineers have been captivated by the
mechanics of deformable objects. Deformability, often associated with compli-
ance or softness, is not a niche phenomenon but a defining characteristic of the
physical world we inhabit. Most of the objects we interact with daily possess
some degree of deformability. The impact of deformable objects on human
evolution is so profound that many anthropologists and scientists credit the
dexterity of our soft, compliant hands as a key enabler of our success as a
species — allowing us to manipulate and craft complex tools and artifacts with

remarkable precision.

Deformable objects are becoming increasingly prevalent in industrial settings—a
shift driven by rising consumer demand for product customization and the
widespread adoption of high-performance materials such as composites. These

materials lie at the heart of several billion-dollar industries, including aerospace,

automotive, logistics, and advanced manufacturing. From forming critical
structural components using large, flexible composite sheets to packaging and
transporting goods in soft polybags, deformable objects play an essential role
in enabling high-performance, scalable production workflows. Even the tools
used in many of these processes exhibit compliance, significantly influencing

the execution of tasks such as screwdriving, fastening, and precision assembly.

Today, as the field of robotics stands on the cusp of a new era, one defined
by widespread deployment in unstructured, real-world environments, the abil-
ity to perceive, predict, and manipulate deformable objects has emerged as a
critical frontier. Addressing this challenge is not merely academic—it is essen-
tial for automation in sectors that underpin global supply chains and modern
infrastructure. To equip robots with manipulation capabilities approaching
human versatility, we must develop methods that marry physical principles
with intelligent, data-driven control, enabling robust and explainable interac-

tion with these complex materials.

1.2 Motivation

Figure 1.1: Industrial tasks involving manipulation of deformable objects.

Deformable object manipulation is a fundamentally challenging problem due
to the complex, high-dimensional nature of soft materials. Unlike rigid bodies,

which retain a consistent shape and can be represented with simple geometric

models, deformable objects exhibit continuous shape changes under external
forces and constraints. Their behavior is influenced by a combination of geom-
etry, material properties, and contact conditions, making it difficult to define
coherent state representations or predict future states. Moreover, deformable
objects often vary in size, shape, and material composition, which adds an-

other layer of variability to the problem.

Humans, however, are remarkably adept at manipulating deformable objects.
Through our multimodal sensing (vision, touch, proprioception), predictive
modeling of physical dynamics, and rapid adaptation to unexpected changes,
we are able to perform complex tasks involving soft materials with ease—be it
folding laundry, assembling wiring harnesses, or packing irregular items. Our
resilience to failure and capacity for reactive behavior are critical enablers of
this proficiency. This human proficiency has historically been a cornerstone of
skilled labor in manufacturing, enabling tasks that require dexterity, adapt-
ability, and nuanced control. Our ability to manipulate deformable objects
has played a critical role in daily life and also underpinned the progress of the

Industrial Revolution itself.

However, the landscape of modern industry is rapidly evolving. The demand
for greater customization, combined with the shrinking availability of skilled
labor for physically demanding or tedious tasks, is driving a shift toward de-
ploying robots in less structured, more variable environments. Industrial set-
tings are increasingly characterized by high-mix, low-volume (HMLV) produc-
tion, where the rigid automation strategies of the past no longer suffice. To
complicate matters further, many of the tasks that remain for human workers
involve manipulating deformable components such as compliant part assem-
bly, deformable tool manipulation, fabrics, polybags, and composite materials
(Refer Fig. 1.1). These objects are inherently variable and difficult to model,

yet must be handled with high precision and care. Automating such tasks is

not only a matter of productivity but also of safety and sustainability in a
workforce-constrained future. It is, therefore, imperative that robots gain the
ability to understand, manipulate, and adapt to deformable objects with the
same fluency as humans—this is the challenge that is directly addressed in

this dissertation.

When it comes to industrial environments, the stakes are significantly higher.
Standards for quality, precision, and safety are stringent, and any deployed
robotic or automation solution must meet these requirements reliably. Al-
though robots have proven their value in structured, repetitive tasks—especially
in automotive and electronics assembly—the next frontier lies in enabling them
to handle unstructured deformable object tasks with similar fluency. This
transition demands more than just better models or more data—it calls for a

new way of thinking about robot learning and reasoning.

This dissertation is motivated by the central question: How can we enable
robots to manipulate deformable objects with the same robustness, adaptabil-
ity, and efficiency as humans, especially in safety-critical, variable industrial
environments? The answer explored here lies in combining physics-based mod-
eling with data-driven learning to form a new class of intelligent, explainable,

and resilient robotic systems.

1.3 Research Issues

Traditional industrial environments, such as automotive assembly lines, have
long been considered structured settings. Standardization, along with signifi-
cant investment in fixtures, conveyors, and jigs, was used to reduce variability
and uncertainty. In such environments, robots could be deployed at scale
without requiring intelligence in perception or decision-making. Instead, they

executed pre-programmed motions with high speed and reliability. However,

this paradigm breaks down when we move toward the manipulation of de-
formable objects. Pre-scripted motion plans are insufficient for these tasks,
which require dynamic adaptation based on the object’s ever-changing state.
To operate reliably, robots must sense using multiple modalities, reason about
object behavior, predict deformations accurately, and recover from failures.
These are capabilities that current automation pipelines are ill-equipped to

handle.

The problem of deformable object manipulation is not new to robotics. Prior
research has explored simplified instances involving 1D and 2D objects such
as ropes, cloths, and elastic beams. These studies often make strong assump-
tions to reduce problem complexity—assumptions that break down in real-
world, high-precision applications. Tasks demonstrated in domestic settings
(e.g., folding laundry or placing garments in a basket) have limited demands
on accuracy, speed, or safety. In contrast, many industrial tasks—such as ma-
nipulating compliant tools for assembly, packing polybag packages, or placing
composite laminates—require millimeter-level precision, failure resilience, and
compliance with strict safety standards. The manipulation of large or shell-
like deformable objects, particularly those encountered in manufacturing and

logistics, remains underexplored.

Recent progress in machine learning has enabled more capable robotic systems.
Learning-based models can extract informative representations from high-
dimensional sensor data and predict the nonlinear dynamics of deformable
materials. However, these methods come with significant limitations. Their
performance is tightly bound to the data they are trained on—the inductive
biases encoded via datasets, architectures, and downstream tasks. As a result,
they often fail to generalize to new object geometries, materials, or unseen

task conditions. This is particularly problematic in industrial contexts, where

high-mix, low-volume (HMLV) production scenarios preclude large-scale data

collection for every variation.

Even in high-volume production settings, collecting real-world data that ad-
equately captures the full variability of deformable parts across shape, ma-
terial properties, initial conditions, and environmental interactions—is both
prohibitively expensive and time-consuming. The complexity and diversity of
deformable object behavior make it nearly impossible to build comprehensive
datasets that cover all relevant edge cases. As a result, purely data-driven
models, which often rely on large-scale, labeled datasets to generalize effec-

tively, struggle when deployed in the wild.

Compounding this issue is the nature of most deep-learning models themselves.
Despite their impressive performance in controlled environments, these models
typically operate as black boxes, offering little insight into why a prediction
was made or how the system might behave under unfamiliar conditions. This
lack of interpretability poses serious challenges in industrial contexts, where
safety, traceability, and regulatory compliance are crucial. These concerns
have created a significant barrier to the adoption of modern learning-based
techniques beyond a lab setting in real-world industrial deformable object

manipulation.

In contrast, humans are able to learn robust models of the world’s physi-
cal behavior from limited data. We leverage a deep, intuitive understanding
of physics to reason about object behavior and adapt our actions accord-
ingly. Physics-informed machine learning (PIML) aims to bring this style of
reasoning into modern Al. By embedding physical priors and governing con-
straints into data-driven models, PIML methods enhance generalization, re-
duce data requirements, and improve interpretability. This dissertation argues

that physics-informed learning provides a path forward for enabling robust,

safe, and scalable deformable object manipulation in industrial environments.
By integrating structured physics knowledge with the flexibility of learning,
these methods offer the best of both worlds: improved efficiency in learning,
better generalization to new conditions, and greater alignment with industrial
safety and reliability standards. This hybrid approach forms the cornerstone

of the contributions presented in this dissertation.

1.4 Objectives and Scope

The overarching objective of this dissertation is to advance the deployment
of robotic systems capable of manipulating complex deformable objects in
unstructured and high-stakes industrial environments. To this end, the dis-
sertation proposes a unified, physics-informed framework that integrates the
strengths of model-based reasoning with the adaptability of data-driven learn-
ing. This framework aims to bridge the gap between theoretical modeling and

practical deployment by addressing five key research objectives:

e Learning Physics-Informed Dynamics Models: Develop methods to learn
interpretable and generalizable models of deformable object dynamics.
This includes building hybrid simulation pipelines that combine analyti-
cal physics with learned components and identifying material or inter-
action parameters that govern deformation behavior. The goal is to
achieve data-efficient learning while maintaining physical plausibility and
explainability.

e Learning Physics-Informed Manipulation Strategies: Utilize physics-based
models to inform the development of manipulation policies that are aware
of object deformation and task constraints. The objective is to enable
robots to perform high-precision manipulation in scenarios where tra-

ditional rigid-body assumptions no longer hold, such as manipulating

deformable tools, large composite sheets, or handling soft packaging ma-

terials.

o (Conditioning Task Planning on Human Preferences: Integrate expert
decision-making into planning for deformable object manipulation. By
learning from demonstrations or preference signals, the goal is to replicate
human-like reasoning that accounts for nuanced trade-offs between effi-
ciency, robustness, and safety, which are critical in high-mix, low-volume

production scenarios.

e Learning Physics-Based Defect Detection Models: Investigate simulation-
driven methods for detecting anomalies and failure modes during manip-
ulation. By generating synthetic data using high-fidelity simulators and
learning explainable models, the aim is to equip robotic systems with the
ability to detect and respond to defects in real time, ensuring safe and

resilient operation.

o Studying Complex Industrial Deformable Objects: Unlike much of the
prior work focused on simple 1D or 2D deformable objects (e.g., ropes
or small cloth patches), this dissertation focuses on complex, shell-like,
and large-scale deformable objects commonly encountered in industrial
applications. These include materials such as polybags, composite sheets,
and screwdriving, each presenting unique challenges in terms of modeling,

sensing, and manipulation.

By addressing these objectives, this work aims to push the boundaries of
robotic manipulation, offering a roadmap for scalable, reliable, and explainable
deployment of deformable object manipulation systems in real-world industrial

settings.

Chapter 2

Foundations and Overview

2.1 Taxonomy of Deformable Objects

Figure 2.1: The three representative classes of deformable objects studied
in this dissertation. Each class presents distinct challenges across modeling,
task planning, manipulation, and failure detection, highlighting the need
for tailored, physics-informed strategies to enable effective robotic
manipulation.

A central contribution of this dissertation lies in redefining the types of de-
formable objects considered in robotic manipulation, especially in the context
of real-world industrial applications. The complexity arises from the objects’
continuously changing geometry, their sensitivity to contact and material prop-
erties, and the difficulty of modeling or predicting their dynamic behavior
under manipulation. While Chapter 1, Section. 1.4 outlined the key tech-

nological components required to enable such manipulation—simulation and

modeling, task planning, manipulation planning, and failure detection—this
chapter shifts focus toward another central theme of this dissertation: the
classification and analysis of the deformable objects themselves. Unlike prior
studies that focus on ropes or garments in relatively constrained settings, this
work expands the scope to deformable objects encountered in high-precision
industrial environments, where material scale, function, and failure tolerance

demand a more rigorous and informed approach.

This dissertation investigates three distinct classes of deformable objects, each
portraying a different axis of complexity and industrial relevance. As shown
in Fig. 2.1, these object categories are representative of real-world challenges
that push the boundaries of current robotic manipulation methods. First, we
explore large deformable sheets, such as composite prepreg materials, which
pose significant challenges due to their scale, anisotropic mechanical proper-
ties, and the high precision required in layup operations. Second, we focus
on shell-like deformable objects, such as packages containing internal contents
with independent dynamics. These 3D structures combine external elastic-
ity with internal variability, creating a compounded modeling and planning
challenge. Finally, we consider tool compliance, where the deformability of
the end-effector itself—particularly in tasks like screwdriving—introduces non-
linear interaction dynamics that must be explicitly modeled to ensure accurate

control and robust execution.

Across all three categories, this dissertation demonstrates how traditional
methods—often designed for small-scale or low-variability deformable objects,
fail to generalize to these more complex cases. In contrast, physics-informed
learning emerges as a unifying framework that enables improved generaliza-

tion, reliability, and safety by embedding physical structure into data-driven

10

models. This perspective guides the design of algorithms and systems through-
out the dissertation, providing a robust foundation for manipulating complex

deformable objects.

2.2 Physics-Informed Learning Paradigm

Figure 2.2: The four key physics-informed learning paradigms explored in
this dissertation. These ingredients—simulation-based learning, advanced
learning to enable structured dynamics modeling, physics-guided constraint
learning for optimization, and compositional learning—can be applied
individually or in combination to enable robots to effectively manipulate
the complex deformable objects studied in this work.

The technological components introduced in Chapter 1, such as modeling,
task planning, manipulation, and failure detection, have each been extensively
studied in the context of deformable object manipulation. However, this dis-
sertation presents a novel perspective on how to systematically embed physics-
based knowledge into each of these components, particularly when dealing with

the complex, industrially relevant deformable objects studied in this work.

There are several complementary ways in which physics can inform a robot’s
decision-making process. As illustrated in Fig. 2.2, we identify four key
paradigms through which physical priors can be incorporated into the learning

framework. These approaches are not mutually exclusive; instead, they can

11

be applied synergistically to improve learning efficiency, generalization, and

interoperability.

1. Simulation-based learning: The first paradigm focuses on using simula-
tion and physics-based models to aid in planning and generating high-
quality synthetic data. This alleviates the need for costly and time-
consuming real-world data collection, enabling the application of data-

hungry learning techniques without sacrificing realism or relevance.

2. Advanced Learning Frameworks: In this paradigm, physical knowledge
is embedded directly into the learning frameworks—either by learning
structured representations that capture governing equations or by design-
ing architectures that reflect known physical structure (e.g., the particle-
based representation for shell-like packages in Chapter 4). These struc-
tured models help constrain the learning space and make the predictions

more grounded in real-world physics.

3. Learning Physics-based Constraints for Optimization via Loss Functions
or Representations: The third paradigm incorporates physical and task-
specific constraints directly into the learning objective. By designing
physics-informed loss functions or enforcing process constraints during
optimization, we introduce inductive biases that guide the learning pro-

cess toward feasible and safe behaviors.

4. Compositional and Modular Learning Architectures: Deformable object
manipulation tasks are often too complex to be effectively learned end-to-
end. Moreover, monolithic models can hinder interpretability and trans-
ferability. Instead, this dissertation advocates for modular architectures,

where each component or sub-task is learned separately and infused with

relevant physics-based priors (e.g., the compositional manipulation strat-
egy in Chapter 9). This structured approach improves both explainability

and adaptability.

These four paradigms represent a practical yet flexible toolkit for integrating
physics into learning. While not exhaustive, they offer a compelling foun-
dation for enabling robust and scalable manipulation of complex deformable
objects. In the chapters that follow, we explore each of these methods in detail,
demonstrating how physics-informed learning can drive intelligent behavior in

real-world robotic systems for manipulating deformable objects.

2.3 Overview and Structure

This dissertation introduces a unified framework for physics-informed learning
to enable robotic manipulation of complex deformable objects in industrial
environments. This chapter has laid the foundation by formally defining the
three key classes of deformable objects investigated in this work and introduc-

ing the core principles of physics-informed learning that guide the methodol-
ogy.

Figure 2.3 presents a conceptual matrix that organizes the contributions of this
dissertation along three key axes: (1) Deformable object class (2D vs. 3D),
(2) Technological component (e.g., simulation, planning, execution, anomaly
detection), and (3) Type of physics-informed ingredient (e.g., simulation-based
learning, structured models, loss/constraints, modular learning). This matrix
illustrates how each chapter contributes to specific intersections within this

conceptual space.

Guided by this structure, the dissertation is implicitly organized into four ma-

jor parts, each centered on one of the technological components introduced in

13

Figure 2.3: A structured overview of the contributions presented in this
dissertation, organized across two axes: the class of deformable object
(sheets, tools, packages) and the technological components (simulation,
planning, execution, anomaly detection). Each marked cell represents a
contribution where physics-informed strategies, such as simulation-based
learning, advanced learning frameworks, constraint-aware planning, and
compositional learning, were employed to address the challenges of
manipulating complex deformable objects.

14

Section 2.1. Each part presents a set of contributions that address the unique
modeling, planning, and learning challenges associated with the deformable

object classes discussed in Section 2.1.

e Part I: Simulation and Parameter Learning (Chapters 3, 4, 5, 8): This
part focuses on structured representations and physical parameter esti-
mation for deformable objects. We propose methods for learning the
physical properties of large composite sheets (2D) and internal-object-
containing packages (3D). In addition, we introduce a method to learn
governing dynamics equations for complex objects, such as compliant
tools in screwdriving tasks, resulting in explainable and task-relevant dy-

namic models.

e Part II: Task Planning Conditioned on Expert Preferences (Chapter 6):
Effective deformable object manipulation must be informed by real-world
process knowledge. We show how expert demonstrations from indus-
trial workflows can be used to learn task-level constraints and high-level
decision-making strategies, enabling robots to perform context-aware and

feasible actions.

e Part III: Physics-guided Manipulation Planning (Chapters 7, 9): This
part addresses manipulation planning using physics-informed simulation
and structured models. We develop planning strategies for bi-manual
manipulation of both 2D (composite sheets) and 3D (deformable pack-
ages) deformable objects, leveraging learned dynamics models to improve

robustness and task success.

e Part IV: Failure and Anomaly Detection (Chapters 8, 10): Robust oper-
ation requires the ability to detect and respond to process anomalies. We
demonstrate how physics-informed models and synthetic data generation

can be used to train interpretable failure detection systems. These include

detecting wrinkles in large sheets and modeling time-based anomalies in

screwdriving tasks involving tool compliance.

Furthermore, each of these Chapters has been published or submitted to peer-
reviewed forums. Chapter 3 has been published at the ASME Journal of
Manufacturing Science and Engineering 1], Chapter 4 has been submitted to
the ASME International Conference for Design Engineering Technical Confer-
ences & Computers and Information in Engineering Conference, Chapters 6 [2]
and 7 |3] have been published at IEEE International Conference on Robotics
and Automation (ICRA), The preliminary work for Chapter 8 has been pub-
lished at IEEE International Conference on Intelligent Robots and Systems
(IROS) [4], while an exhaustive work that was built up on this is submitted
to the Robotics and Computer Integrated Manufacturing Journal. Chapter 9
has been published at IEEE IROS [5], while Chapter 10 has been published
at the ASME Journal of Computing and Information Science in Engineering

(JCISE) [6].

Together, these four parts demonstrate the versatility and effectiveness of
physics-informed learning across a broad spectrum of deformable object classes
and industrial use cases. By integrating simulation-based reasoning, data-
efficient learning, and task-aware planning, this dissertation offers a unified
perspective on how intelligent robotic systems can be designed to handle the
complexities of deformable object manipulation. The proposed methods pave
the way for more explainable, resilient, and generalizable robotic solutions for
manipulating deformable objects, ultimately bringing us closer to safe and

scalable deployment in real-world industrial environments.

16

Chapter 3

Learning Simulation Parameters for Large,

Sheet-like Deformable Objects

3.1 Introduction

Sheet-like deformable objects are found across nearly every domain, from ev-
eryday household items to high-performance industrial materials. They vary
widely in size, aspect ratio, and composition — from a small T-shirt to a large
bedsheet, yet humans handle them with remarkable skill. Many of these tasks
involve complex interactions between material properties, gravity, and con-
tact forces. In aerospace, for instance, the layup of prepreg composite sheets
requires carefully draping large, anisotropic materials over contoured molds
while avoiding wrinkles and misalignment. Similarly, in the automotive do-
main, tasks like positioning seat covers or floor mats demand precise adjust-
ments to achieve tight fits around complex geometries. In the textile industry,
operations such as hemming require fine-grained control of soft fabrics with
high positional accuracy. These examples highlight the intricate nature of
sheet manipulation tasks and the dexterity, adaptability, and physical intu-

ition that humans bring to them.

17

The primary obstacle to robotic adoption for tasks involving large, flexi-
ble sheets is their intricate, highly nonlinear dynamics. Industrial processes
demand high-level precision, repeatability, and quality, often at production
speeds that match or exceed human performance. Reliable robots, there-
fore, require predictive models that capture sheet behaviour under gravity,
contact, and manipulation forces so that safe and efficient strategies can be
planned. While rigid-body dynamics are well understood and widely exploited
in robotics |7], those methods do not transfer directly to compliant materials.
Accurate parameter identification — bending stiffness, membrane tension, fric-
tion, damping, and more is essential for building high-fidelity simulations of

deformable sheets.

Prepreg composite layup exemplifies both the industrial importance and the
modelling challenges. Composites are experiencing double-digit annual growth
and underpin multi-billion-dollar sectors such as aerospace, wind energy, and
advanced mobility [8]. In the prepreg process, resin-impregnated sheets are
hand-placed onto tooling, then compacted ply by ply. Defects such as wrin-
kles, air gaps, and bridging arise when the sheet slides or buckles, jeopardising
structural integrity [9, 10]. Existing automated solutions — Automated Fiber
Placement (AFP) and Automated Tape Layup (ATL) handle only simple ge-
ometries; complex parts still rely on skilled labour, leading to variability, re-
work, and high cost. Automation will be viable only when a robot can predict
sheet behaviour in advance and adjust its actions on-the-fly, because once a
prepreg ply is draped, it is difficult to reposition without damage. Thus, if we
want robots to handle such a complex task, a high-fidelity simulation of such

multi-material sheets is important.

To address these challenges, this chapter presents a data-efficient, physics-
informed framework for learning the simulation parameters of large, sheet-like

deformable objects under fixed constraints. The proposed approach leverages

18

Figure 3.1: Left: the simulated prepreg under external forces and
constraints. Right: the current robotic cell with two Kuka iiwa R7 robots
and one Kuka iiwa R14 robot.

high-fidelity thin-shell simulation and real-world observations to estimate key
material properties with minimal experimental effort. By incorporating prior
deformation knowledge through a thin-sheet finite element formulation and
using the VegaFEM [11] library for simulation, we construct models that are

both accurate and physically interpretable.

The learned simulation parameters are subsequently used to construct a dig-
ital twin represented by a force, damping, and mass matrix that can emulate
prepreg sheet behavior under external fixed constraints. The study then fo-
cuses on model evaluation and testing for different conditions. A detailed
comparison of the parameter model predictions and experimental data is also
presented. The proposed system enables real-time prediction of sheet dynam-
ics and supports the development of autonomous robotic cells for tasks such
as prepreg layup. As illustrated in Fig. 3.1, the learned parameters are inte-

grated into a simulation loop that supports planning, validation, and feedback

19

control. We demonstrate how this approach generalizes across different ma-
terials, such as cotton, felt, and canvas, and discuss its potential in enabling

safe, high-throughput manipulation of deformable objects.

3.2 Related Work

Mechanical simulation of composite prepreg sheets has been widely explored,
particularly for predicting draping behavior over complex molds. These sim-
ulations typically represent the sheet using a mesh and aim to capture fiber
alignment, shear, and bending characteristics. One of the simplest and com-
putationally efficient approaches is kinematic simulation, which models the
interaction based solely on mold geometry [12, 13]. While fast, such models

often lack accuracy in predicting internal strain or out-of-plane deformation.

To achieve greater fidelity, elasticity-based simulations have been developed
that compute internal strain distributions within the fabric [14]. Finite Ele-
ment Analysis (FEA) models further extend this capability by explicitly sim-
ulating the deformation mechanics of cloth and composite sheets [15]. For
instance, in [16], a robot was used to place flexible material on a doubly
curved mold, where FEA models were employed to assess material conformity.
Although FEA approaches offer high accuracy, they tend to be computation-
ally expensive, limiting their use in iterative or real-time applications. In this
chapter, a new variant of FEA developed in the computer graphics commu-
nity is adopted, which offers a favorable trade-off between simulation speed,
stability, and accuracy [17, 18]. This allows the proposed system to maintain
a high level of fidelity while running at interactive rates, thus supporting fast

design iteration and in-the-loop parameter optimization.

20

Comprehensive reviews of fabric simulation techniques are provided in [19],
while |20] offers an overview of recent advances in automated composite drap-
ing. Several hybrid approaches—known as progressive drape models—combine
elements of both kinematic and FEA-based methods to balance accuracy and
computational efficiency [21, 22]. Another class of simulation methods is based
on particle systems [23-26], which are computationally tractable but often lack

the physical accuracy of continuum models due to their discrete nature.

For any of these simulation approaches, accurately tuning the model parame-
ters to reflect real-world behavior is critical. For fabrics, material parameters
can be extracted using Kawabata plots |27], which characterize properties like
bending and shear under controlled conditions. However, prepreg compos-
ite sheets differ from fabrics in that they are significantly stiffer and require
higher-precision force and displacement measurements, making techniques like
Kawabata plots less practical. Instead, this chapter proposes a data-driven
method that uses FEA simulation in conjunction with optical motion tracking
to estimate material parameters. The proposed approach avoids direct mea-
surement of internal elastic forces, enabling accurate parameter estimation for

composite sheets under realistic constraints.

3.3 Simulation Model Description

This chapter employs a thin-shell finite element method (FEA) to simulate the
behavior of viscoelastic prepreg composite materials. The simulation model
is based on formulations developed in the computer graphics community [17,
18], and is summarized here for completeness. These models strike a balance
between computational efficiency and physical accuracy and, to the best of the
author’s knowledge, have not been previously applied to real-world composite

prepreg materials in industrial contexts.

21

While simulation fidelity is important, computational speed is also a critical
factor, particularly for applications such as material parameter optimization
and in-the-loop planning. The method described in this chapter is capable
of interactive performance at approximately 10 frames per second, making it
well-suited for rapid design iteration and parameter learning. Domain-specific
constraints relevant to composite layup, such as surface adhesion and boundary
pinning, are incorporated into the simulation framework, along with real-time
sheet tracking and optimization routines for aligning simulation output with

real-world deformation observations.

The prepreg sheet is modeled as a triangulated mesh, where the displace-
ment of each vertex in 3D space (x, y, z) constitutes a degree of freedom in
the simulation. The material’s mechanical response is governed by internal
forces resulting from bending, shear, and in-plane stretching. These forces are
computed based on elasticity theory and serve as the basis for dynamic simu-
lation. To improve computational efficiency, the simulation also includes the
analytical computation of Jacobians for both bending and tensile-shear forces,

enabling faster convergence during parameter optimization.

3.3.1 Tensile and Shear Forces

This subsection describes the formulation used to model tensile and shear
forces within the sheet-like deformable object. The simulation operates on
a mesh representation of the sheet, where each triangular element serves as
the fundamental unit for computing internal elastic behavior. The surface
of the sheet is parameterized using a 2D coordinate space, defined by (u,v)
parameters. The corresponding 3D weft and warp vectors, denoted by Uand V

respectively, are derived from this parameterization. These vectors represent

22

local in-plane directions of the material and need not be orthonormal after

deformation.

Figure 3.2: Undeformed(left) and Deformed(right) states of a triangle in
the mesh representing the sheet. The warp and weft vectors V and U are
used to compute the tensile and shear strains.

To illustrate the computation, consider a single triangle in the mesh in both
its undeformed and deformed states, as shown in Fig. 3.2. The 3D vertex
positions of the triangle, Py, Py, P, are mapped from their corresponding (u, v)
parameter coordinates: (uq,vq), (up,vp), and (uc,ve). The weft and warp
vectors are represented by weighted sums of the three parametric vertices of

the triangle. We can formulate a linear system of six equations: Z Tuilly = 1,

i
Zrmvi =0, ZTW' =0, Zrmui =0, mei =1, and eri = 0, where
i ZE {a,b,c}. Thie weights Tu: and 7,; can bze precomputed usilflg the equations:
Tua = A" (0 —Ve), Toa = d" e —up), rup = d"H(ve —va), Top = d~H(ug — ue),
Tue = A" (Vg — vp), and rye = d~(up — uy), where d = ug(vy — ve) + up(ve —
Va) + Uc(vg — vp). The system of six linear equations is solved to obtain the
vectors U and V given by the equation (3.1). The viscosity of the material
is given by the evolution rates or rate change of these vectors given by the

equation (3.2). The vectors are then used to compute the Green-Lagrange

23

strain tensor, which consists of shear and tensile strains. The rate of change
of these strains is then derived. Equations (3.3, 3.4, 3.5, and 3.6) gives the

representations.

ﬁ: Z TuiPi ‘7: Z TM‘PZ‘ (3.1)

i€{a,b,c} i€{a,b,c}
U= > ruPl V= > 1P (3.2)
i€{a,b,c} i€{a,b,c}
e = S(OTT —1) €, = 30T (3.3)
e = s(VIV 1) €, =LVTV) (3.4)
ew = S(OTV = VTT) (3.5)
e = SOV + VT (3.6)

Deriving the weft, warp, and shear components of total elastic energy of the
triangle with respect to vertex position gives us the force applied at the j*

vertex of the triangle, given by the equation (3.7).

—(auu(rujlj) + aw(rvﬁ) + ouv(ruﬁ + ij(j)) (3.7)

The stress tensor provides the values of the stresses o;; used in the equation
(3.7). The relationship between stress and strain tensor is given by o =
Ee+ E'¢’ where E and E’ are the elastic and viscosity stiffness matrices of the
material, and ¢ and e are the 3D stress and strain vector. Subsequently, the
force Jacobian necessary for the implementation and efficiency of numerical
techniques are computed. The Jacobian for it and j** vertex where both i, j €
{a,b,c} is computed using the equation (3.8). If viscosity is also considered,

then another contribution given by equation (3.9) must also be considered.

24

OF; _ |d 0o [Ock, den
ok 2(Z Oe, (8381:’]-

m,ne{uu,vv,uv}

0 Ol
2 mlman)

m,ne{uu,vv,uv}

aFj o _M aO-m 86%%
oF = "z (> o <8B- P,

m,ne{uu,vv,uv}

The stiffness component governs how the stress-strain relationship affects the
forces acting on the triangle’s vertices. The new position of the vertices is
then found by considering internal and external forces during the simulation.
The force acting due to bending stress is also superimposed with the tensile
and shear forces to improve simulation accuracy. The following subsection

describes how bending forces are computed and incorporated to enhance sim-

ulation fidelity further.

3.3.2 Bending Forces

Figure 3.3: (Left) Two adjacent triangles in the mesh and the bending
angle 6 between them. (Right) Three neighboring triangles for a triangle

under consideration are shown.

25

Bending forces are computed based on the hinge angle between adjacent tri-
angles in the mesh. This chapter adopts the mathematical model introduced
in [18], which provides a stable and efficient method for modeling thin-shell
bending behavior. As shown in Fig. 3.3, two adjacent triangles in the mesh
define a hinge, with their respective normals denoted by n1 and ny. The angle
6 between these normals quantifies the local bending deformation at the hinge.
Consider the total bending energy Fj = Z ¥ (0;) as a function of # summed
over all possible hinges ¢ of the mesh. The Eunction 1) is an application-specific
function of the bending angle . We can obtain the bending force by differenti-

ating the energy with respect to the vertex position z as F'(x) = — Z Vi and
the hessian can be obtained as H(z) = Zzp’Hess(@i) +¢"'V6;1V0;, where

Hess(6;) is the second-order derivative of 6; with respect to . In this work,

the function v (0) is given by the equation

»(0) = k:(2tan(g) — 2tan(g))2,¢9 € (—m,m), (3.10)

where k is a constant dependent on material properties and € is the angle
at the rest configuration. Details on how to compute the gradient and the
Hessian of the bending energy analytically are given in [18|. At each timestep,
the bending forces and the Jacobian of the forces are updated based on the

vertex positions.

3.4 Estimating Sheet Parameters

3.4.1 Overview

This section outlines the methodology used for estimating the physical param-

eters of various sheet-like deformable materials, including composite prepregs,

Figure 3.4: Process Overview: The initial state of the sheet is defined as
the sheet configuration under initial boundary conditions. The

releasing /released sheet state is defined as the sheet behavior after
releasing one of the boundary conditions. After conducting physical
experiments, initial mesh and observed data in the form of a mesh of the
sheet are obtained from two sheet states, respectively. The data is further
fed to the optimizer to acquire computed parameters.

27

cotton cloth, felt, and canvas. The parameter estimation process was di-
vided into three main stages: (1) data acquisition, (2) data preprocessing and

simulation-based optimization, and (3) parameter validation through testing.

Data acquisition was conducted in a physical environment using a guided ma-
nipulation procedure. During this phase, the sheet materials were subjected
to a controlled release of boundary constraints, and their deformation was
recorded using a 3D depth-sensing system to capture point cloud data. Two
key configurations were recorded: the initial state, where the sheet was held
under fixed boundary conditions, and the released state, observed after one
constraint was removed. These configurations were converted into mesh rep-

resentations suitable for simulation.

Subsequently, the mesh data was passed into an optimization framework oper-
ating entirely in a simulated environment. This framework iteratively adjusted
the material parameters to minimize the discrepancy between simulated and
observed deformations. The result was a set of optimized material parameters

for each type of sheet.

Figure 3.4 illustrates the overall pipeline. The full details of the parameter op-
timization framework are presented in Section 3.4.3. This method was applied
independently for all four material types, allowing a comparative evaluation
of the model’s ability to generalize across materials with varying mechanical

properties.

3.4.2 Acquisition of Training and Testing Data

The data was collected using a Hexagon RS5 laser scanner and contact probe
attached to the Romer Absolute Arm (87-Series). The class 2M laser scanner
is hand-operated and generates point cloud data. Fig 3.5 shows all scanning

equipment below. The sampling filter can be manually set to optimize the

28

Settings Value
Max Capture Rate | 752000 points/sec
Percentage 25 %
Exposure Time 200
Point Spacing 0.052 mm
Line Width 130 mm
Sampling Rate 51 Hz

Table 3.1: Settings used on the Hexagon RS5 laser scanner

percentage of points recorded and exposure time based on the light in the
sampling environment and the color of the scanned component to reduce noise

and capture the target locations. The settings can be seen in Table 3.1 below.

Figure 3.5: (A) Romer Absolute Arm, (B) Laser Scanner, (C) Contact
Probe, and (D) Contact probe variety

The contact probe was calibrated using a TESA TKJ 3mm Ruby Ball Probe.
The probe and laser were subject to accuracy specifications designated by the

manufacturer in Table 3.2.

Equipment Accuracy

Laser Scanner | 0.028mm
Contact Probe | 0.046mm

Table 3.2: Accuracy Specifications for Laser Scanner and Contact Probe

29

3.4.2.1 Sheet Preparation

Figure 3.6: Sheets were prepared by attaching 289 quarter-inch markers to
each sheet

To prepare each sheet for scanning, quarter-inch markers were placed at even
intervals along the sheet in a 17x17 grid for a total of 289 markers. The markers
used were white 3M double-sided foam tape squares cut to the correct size.
The markers were raised from the surface, allowing the scanner to detect them
easily. One of the sample materials used was white in color, and the markers
had to be colored in black to be picked up by the scanner. Otherwise, the color
difference was considered optimal for scanning with the previously mentioned
settings. The four locations of the clamps obscured the markers and were
recorded separately via the contact probe for use within the simulation as a

fixed point.

30

Figure 3.7: Clamps fixed the sheet configuration at four points. This is
defined as the initial state.

3.4.2.2 Sheet Deformation Data Generation

The data was collected during two trials for each material tested. Each sheet
edge was grasped using four vertically fixed clamps, allowing the sheet to rest
suspended between them, as shown in Fig. 3.7. The clamping locations were
chosen at differing and unique distances from adjacent corners. The collection
period for each trial featured a five-stage setup, with each stage introducing a
new modification to sheet positioning by moving the clamp with respect to the
room while retaining the clamping position on the sheet. The translational
movement of the clamp was chosen arbitrarily, but all movements had a change

in distance of no more than 350 mm.

The first stage required placing the sheet under the initial boundary condi-
tions of the first stage, resulting in the sheet being suspended in a relaxed,
horizontal position. The next three stages involved isolated movement of only
one grasping location to a new position, with a general increase in the z-axis,
coinciding with x- and y-axis movement toward the center of the sheet. The
last stage for every trial was the release of the clamp, allowing the material to
settle into a hanging position. Within each stage, each clamp changed location

only once and was allowed to settle into position until no visible movement

31

could be detected. After clamp relocation, the new clamp locations were col-
lected via the contact probe at the beginning of each stage, and the sheet was

scanned using the laser scanner. This procedure can be observed in Fig. 3.8.

The point cloud data collected from each stage was processed using PC-DMIS
and exported as an XYZ file for post-processing. Each sheet contained thou-
sands of data points from each stage, with each marker averaging 300 points.
The simulator requires only one point from each marker, so each XYZ file was
processed through Blender software using an original Python script to isolate
the center point of each marker and export them as 3D points relative to the
world coordinate system of the scanner base. A comparative image of the
same sheet is shown above in Fig. 3.9, demonstrating the reduction from the

point cloud marker clusters to single points.

On successful construction of the initial mesh, the boundary conditions of the
sheet are changed by releasing one of the clamps. Note that the remaining
clamps should not be moved to maintain consistency throughout the process.
The sheet state after changing the boundary conditions is defined as the re-
leased state. Fig. 3.8 shows the difference between the initial state and the

released state.

Since no mesh is required to generate from the released state, the point cloud
data of such a state is clustered to represent each marker. The data set
acquired in this process is further defined as the observed data. Fig. 3.9

shows the point cloud data clustering process.

3.4.3 Model Parameter Estimation

3.4.3.1 Sheet Simulation System

The crucial element of the parameter estimation process is the composite sheet

simulation system. Fig. 3.10 illustrates the block diagram for the proposed

Figure 3.8: (A) Labeled sequence of stages depicting sheet position
movements during one trial

Figure 3.9: Point cloud clusters (left) vs single point vertices (right) on one
sheet

33

simulation system. The simulator system utilizes the initial mesh as geo-
metric information input and applies the model parameters to construct the

composite sheet model.

The model parameters are categorized into two types: 1) Material parame-
ters and 2) Integrator parameters. Material parameters consist of the surface
density and the internal force parameters: tensile stiffness, shear stiffness, and
bending stiffness. On the other hand, integrator parameters include damping

stiffness and damping mass.

Once the sheet model is constructed [28], the numerical integrator applies the
boundary conditions and external forces, such as gravity, to the sheet model
and solves the deformation equation [29]. After the predicted mesh is gener-
ated, the prediction error is obtained by comparing the predicted mesh and
the observed data. The prediction error, F, is a function of model parameters,
P, initial mesh, M, and observed data, O. Algorithm (1) is used to calculate

the prediction error function.

Algorithm 1: Prediction Error

Input:

de O

Mpre < Simulate(P, M)
Output: Error

1 for d do
2 v < FindClosest(d, Mp,.)
3 disp < |v —d|

4 Error < Average(disp) + 0.5 « Mazimum/(disp);

Let d be a data point in the observed data, O. After getting the predicted
mesh, Mp,., by applying P and M to the simulator, we query each d to find the
closest vertex, v, on Mp,.. The prediction error is then defined as the average
displacement between v and d plus half of the maximum displacement across
the entire mesh. The prediction error is used for parameter optimization,

which will be discussed in Section 3.4.3.3.

34

Figure 3.10: Simulation Process Overview: The simulator used the material
parameters and mesh information to predict sheet behavior under specified
conditions.

3.4.3.2 Parameter Boundary Selection

The model parameter identification uses a nonlinear optimizer to compute
the optimal parameters for simulating the composite prepreg. However, the
optimizer is not required to compute all model parameters. Some of these
parameters can be measured directly. As mentioned in section-3.4.3.1, model
parameters comprise material parameters and integrator parameters. Since
integrator parameters are not related to model construction, the damping
stiffness and damping mass are set to 1.0 and 0.0, respectively. The surface
density can be measured directly by scaling the sheet and dividing it by the
surface area. Therefore, the remaining parameters, tensile stiffness, shear

stiffness, and bending stiffness, are the parameters that require optimization.

To ensure the effective performance of the optimizer, appropriate upper bounds,
lower bounds, and initial values for the parameters are required. Fig. 3.11

shows the input-output diagram for parameter boundary selection. Tensile

35

stiffness and shear stiffness are sampled into three categories: 1) 500, 2) 5000,
and 3) 50,000. For bending stiffness, the parameter is sampled into 1) 0.01, 2)
0.001, and 3) 0.0001.

Figure 3.11: Input-Output Diagram for Parameter Boundary Selection.

After getting three samplers for each parameter, we shuffled them and got 27
candidates to test for parameter feasibility. All candidates that cause system
failure are eliminated, and those with the smallest prediction error or com-
parable to the smallest one are highlighted. Candidate {5000,5000,0.001}
has the best overall performance among 27 candidates, and therefore, it is
selected to be the initial value set for the parameter optimization. Then,
the initial values are used as the median for the parameter boundary. Thus,
the upper boundary for the {Tensile stiffness, Shear stiffness , Bending stiff-
ness} is {9000,9000,0.0011}. The lower boundary for the parameter set is

{1000, 1000, 0.0009}.

3.4.3.3 Optimization Algorithm

The optimization library used in this work is NLOPT|30], an open-source
library for nonlinear optimization. The selected algorithm is ISRES, Im-
proved Stochastic Ranking Evolution, a global-gradient-free optimization al-

gorithm|31]. Fig. 3.12 shows the block diagram for the optimization process.

36

The parameter optimizer utilizes the training sets and initial parameters as
inputs and calculates the prediction errors for each sampler. The goal of the
optimizer is to find the parameters that minimize the sum of the errors from

the training set.

{mi,...,mg} € M,
{01,...,06}60

P,y < arg m];n Zle(Ei(P, mi, 0;)) (3.11)

The optimization problem can be expressed as equation (3.11). Let M be the
initial meshes in the training set, which contains mesh data, m;. O is the
observed data set, which contains observed data o;. Recall that the prediction
error, F;, is defined in the algorithm (1). Since five samples are used for
model training, k is set to 5. The optimizer tries to find the parameters
that reduce the average and maximum displacement differences between the
predicted mesh and the observed data for each training set. This error value
was set to (Average Error + 2*Max error). Once the error converges, the

identified parameters, P, simulate the composite sheet in real time.

3.5 Results

3.5.1 Experimental Specifics

Four materials are considered in this work: prepreg composite sheets, common
cotton cloth, felt, and canvas. Boeing Inc. supplied the composite sheet, which
came as 3ft x 4ft sheets, while all other sheets were purchased locally and were

2ft x 2ft in dimension, shown in Fig.3.13. As discussed previously, the prepreg

37

Figure 3.12: Parameter Optimization Process.

composite sheet contains viscoelastic properties due to the resin contents, while
all other sheets contain no resin or viscous content. The elastic materials all
have a standard /uniform weave. Details of the elastic materials are shown in

Table. 3.3.

Figure 3.13: Sheets used for four material samples. Left: Elastic Fabric
Materials. Right: Viscoelastic Prepreg Material.

The composite prepreg material provided by Boeing came with manufacturer-

prescribed density and thickness specifications (refer to Table 3.4). The elastic

38

Table 3.3: Elastic Material Measurements

Measurement Cloth Canvas Felt
Sidel 611 mm 613 mm 615 mm
Side 2 611 mm 613 mm 612 mm
Thickness 0.1 mm 0.65mm 1.8mm
Mass 421 ¢g 168.9 g 66.9 g
Surface Density | 0.1126 kg/m? | 0.4509 kg/m? | 0.0018 kg/m?

materials came with no specifications and thus required density calculations

and thickness measurements, shown below in the Table. 3.3

Table 3.4: Viscoelastic Material Specifications

Measurement Composite Sheet
Sidel 1.17m
Side 2 0.975 m
Thickness 0.3 mm
Poisson’s ratio 0.3
Surface Density 0.3 kg/m?

The physical experiment process described previously was repeated twice for
each material type for a total of eight trials. In the case of the composite sheet,
two different sheets were used, as it was determined that the combination of
experimental movements and exposure to air may degrade the sheet, possibly
providing poor results. The elastic materials were all used on the same sheet
twice. Of the two trials for each material, the data collected from one trial

was used for training purposes, while the other was used for testing purposes.

3.5.2 Sheet Parameter Estimation

Estimation of sheet parameters was accomplished through the simulator, as
previously discussed. The internal parameters were considered in one state
throughout the simulation procedure. Still, research has shown that linear

elastic woven fabrics vary in many of their internal parameters due to the

anisotropic behaviors of the fabric [17]. As such, manual manipulation of

39

the parameters from the initial internal parameters was needed to find an
ideal starting range for the optimization. The initial parameters were found
experimentally and were then run through the optimizer, providing the lowest

error results.

The following two tables highlight the training and testing performance of the
simulator in terms of the average error and maximum error for the training
and testing data sets. Table 3.5 gives the results for the training of fabric

materials, and Table 3.6 gives the results for the testing of fabric materials.

Table 3.5: Fabric Material Training Data

Fabric Material Training

Material | Avg Error [em] | Maximum Error|cm|
Felt 2.3 7.8
Cloth 1.1 5.5

Canvas 1.4 6.0

Table 3.6: Material Testing Data

Fabric Material Testing

Material | Avg Error [em] | Maximum Error|cm|
Felt 2.6 8.2
Cloth 1.6 5.6

Canvas 1.5 6.2

Figs. 3.14, 3.15, and 3.16 show the configuration of stage 5 for the felt, cloth,
and canvas sheets, respectively. In each figure, the upper image is the observed
position photograph, the middle image is the mesh generated from the scanned
point cloud data, and the lower image is an image of the simulation mesh at

the end of the stage.

The following figures depict the initial and final positions for the composite
sheet trials. Within the initial stage shown in Fig. 3.17, consistency can be

seen between the image, observed data, and simulation data.

40

Figure 3.14: Trial 1 Stage 5 Results of Felt Sheet: (Upper) Observed
Position Image, (Middle) Generated Mesh, and (Lower) Simulated Mesh.

Figure 3.15: Trial 1 Stage 5 Results of Cloth Sheet: (Upper) Observed
Position Image, (Middle) Generated Mesh, and (Lower) Simulated Mesh

41

Figure 3.16: Trial 1 Stage 5 Results of Canvas Sheet: (Upper) Observed
Position Image, (Middle) Generated Mesh, and (Lower) Simulated Mesh

Table 3.7: Composite Training and Testing Data.

Composite Sheet Material

Sheet Avg Error [cm] | Maximum Error [cm|
Training 1 1.6 10.2
Testing 1 1.4 13.9
Testing 2 2.2 13.6

Figure 3.17: Trial 1 Stage 1 Results of Composite Sheet: (Upper) Observed
Position Image, (Middle) Generated Mesh, and (Lower) Simulated Mesh.

Within the final stage, there was consistent error across all material types,
however this error was higher than all other stages indicating that this position
was the most difficult for the simulator to emulate. Fig. 3.18 depicts this

position and displays results from the observed data and simulated data.

The error from the training data is shown in Table. 3.7. The optimal pa-
rameters were a bending stiffness of 4.77682e7 N/m? and a shear stiffness of
2942.93 N/m. The optimization process began with initial values based on

the data sheet supplied by Boeing, as shown in the Table below. 3.8.

Table 3.8: Initial Optimizer Parameters

Parameter Initial Value
Sheet thickness 0.0003 [m]|
Poisson’s ratio 0.3

Sheet density 0.3 [kg/m?]
Shear Stiffness 3.3e2 [N/m)]
Bending Stiffness | 1.1e8 [N/m?|

43

Figure 3.18: Trial 1 Stage 5 Results of Composite Sheet: (Upper) Observed
Position Image, (Middle) Generated Mesh, and (Lower) Simulated Mesh.

Figure 3.19: Real-time sheet simulation result: The first row shows the
predicted mesh from the simulator. The second row shows the actual
behavior of the composite sheet.

44

3.5.3 Sheet Simulation

The results obtained from the material parameter estimation are then utilized
to develop a simulation system that can predict the material’s behavior under
varied constraints. This section focuses on one of the potential applications
of such a high-fidelity simulator. In Composite Prepreg sheet layups, as dis-
cussed earlier, the sheet needs to be held at appropriate locations to avoid any
potential defects during the layup. A sheet simulation system that can predict
the appropriate locations for grasping the sheet can be instrumental in process
planning. The key elements of such a simulation system would be (1) A Sheet
Simulation Model generated using the estimated material parameters and (2)
A Real-Time Sheet Tracking System that can generate a mesh of the sheet in
real-time at high frame rates and that can then be used for comparison with
the simulated result. To demonstrate the feasibility of such a system, an ex-
periment was designed using the carbon fiber-reinforced epoxy sheet provided

by Boeing Inc.

The methodology for material parameter estimation proposed earlier was used
to generate an appropriate model for the Boeing Composite Sheet. The simu-
lation system was built using the VegaFEM library [11]. Fig. 3.20 shows the

block diagram of the proposed real-time sheet tracking and simulation process.

The dimensions of the composite sheet used in this experiment were 4ft x 3ft,
which required a multi-camera system to track the entire sheet. The real-
time sheet tracking system proposed in this study consists of three RealSense
D415 cameras. The entire sheet is captured by fusing the RGB-D feed from
all three cameras. Color-based filtering techniques are employed to filter the
prepreg sheet from the rest of the scene. Resampling is performed on the
resulting points to obtain a uniform distribution of the filtered points. The

face normals are then recomputed using these points. Surface reconstruction

45

is performed in scale space by implementing Advancing Front Surface Recon-
struction [32]. A scale-space describes the point set at a dynamic scale, and
this additional dimension allows us to control the degree of smoothness re-
quired for the reconstruction [33]. After post-processing, a surface mesh with

around 6,000 triangles was obtained.

Figure 3.20: Real-time sheet simulation process.

The composite sheet was constrained in four different states to test the sys-
tem’s performance. Initially, the sheet is constrained at four grasping loca-
tions. A human and two 7 DOF robotic manipulators KUKA iiwa R7, are used
to apply the fixed constraints. The Real-Time Sheet Tracking System captures
the mesh and grasping locations for the corresponding state. In the next step,
one of the grasping locations is released. The sheet is allowed to settle to its
minimum energy state, and the real-time sheet tracking system captures the
sheet in its respective state. This exercise is repeated for three other states by
changing the grasping locations and capturing the sheet behavior. This data
is then compared to the predictions generated by the simulation system. Fig.
3.19 contrasts the four states where the composite sheet was suspended and

the corresponding simulator predictions.

46

The proposed simulation and real-time sheet tracking system can play a pivotal
role in predicting optimal grasping locations for the draping of composite
sheets. These grasping locations can then be used to deploy a human-robot
collaborative cell where the robots can aid the human in the draping process
by holding the sheet appropriately [3]. Furthermore, the sheet tracking data
can act as a rectifying input for the grasping location in case of sub-optimal
simulator predictions. Such a conjunctive system can aid in streamlining the

prepreg layup process and achieve an overall higher degree of automation.

3.6 Summary

This chapter presented a framework for estimating material parameters for
sheet-like deformable objects and constructing high-fidelity simulation models
that capture their dynamic behavior under external constraints. The focus
was on modeling large, compliant sheets — including prepreg composites, cot-
ton cloth, felt, and canvas— using a data-driven approach grounded in elasticity
theory and implemented through an efficient thin-shell finite element formu-

lation.

A thin-shell simulation environment was developed using the VegaFEM li-
brary, enabling rapid evaluation and optimization of material parameters. A
multi-stage methodology was introduced, encompassing physical data acquisi-
tion, parameter estimation through simulation-based optimization, and valida-
tion across multiple materials. The modeling approach incorporated domain-
relevant constraints such as fixed supports and gravity, and demonstrated the
ability to simulate sheet deformation under realistic conditions with high ac-

curacy.

47

The parameter identification pipeline enables the generation of digital twins
that can serve as predictive tools in downstream robotic applications. Specif-
ically, this chapter’s contributions lay the groundwork for planning and exe-
cuting robotic manipulation strategies that depend on understanding the de-
formation dynamics of flexible sheets. This capability is especially critical for
automating prepreg composite layup—a process where accurate prediction of
material behavior is essential for avoiding defects and ensuring high-quality

results.

The findings in this chapter support several broader goals of the dissertation:

e First, they demonstrate how physical priors, when embedded into simu-

lation and learning pipelines, improve both accuracy and efficiency.

e Second, they provide a validated modeling foundation for subsequent
chapters focused on task and manipulation planning (e.g., grasp planning

and sequencing for tasks involving deformable sheets).

e Finally, they highlight the importance of combining real-world sensing
with simulation to build generalizable, explainable models of soft, de-

formable sheet-like objects.

The subsequent chapters build directly on this work by leveraging the learned
simulation model for robotic manipulation planning, where simulation is used
as a surrogate model to generate feasible and task-aware robotic actions. Fur-
thermore, it’s also used to generate physics-informed synthetic data for defect

detection in sheet-like objects.

48

Chapter 4

High-Fidelity Simulation of Shell-Like Deformable
Objects Using FEM

4.1 Introduction

Deformable objects have long been studied in the robotics and simulation com-
munities, particularly focusing on cases where the deformations are primarily
surface-level, such as 1D ropes, or 2D sheet-like structures like fabrics and
composite layers. However, the landscape of deformable object manipulation
is rapidly evolving. Driven by the explosive growth of online retail and con-
sumer demand for small-volume shipments, a new class of deformable objects
has become increasingly prevalent across logistics, warehouse automation, and

fulfillment industries: deformable packages.

These packages, such as polybags and padded mailers (Refer Fig. 4.1), present
a unique structure: they can be conceptually viewed as two flexible surfaces
(top and bottom sheets) fused together, containing an internal object that
moves independently within the package. This layered system introduces new
challenges as external deformations are compounded by internal dynamics,
as the mass and shape of the contained object shift unpredictably during

manipulation. Unlike simple sheets, these shell-like deformable objects require

49

specialized modeling and planning approaches that account for both surface
compliance and internal mass movement, making them fundamentally different

from traditional deformable systems studied in robotics.

Figure 4.1: Examples of deformable packages made from various materials
used in the fulfillment industry. The internal object, a tablet in this case, is
enclosed within the package, demonstrating the challenge of handling such
deformable structures.

Despite their potential, robotic systems face significant challenges in handling
deformable packages due to their complex nature. In large-scale fulfillment
centers, these packages are primarily handled using suction-based end effec-
tors, as vacuum gripping is well-suited for their smooth, non-porous surfaces
(Refer Fig. 4.2). The primary task in these environments involves picking up

a package from a moving conveyor belt and placing it into a designated bin for

50

sorting, packaging, or shipping. However, unlike rigid boxes, deformable pack-
ages undergo complex shape changes when manipulated, making traditional

rigid-body suction-based grasping strategies ineffective.

Figure 4.2: Example of a robotic cell using a suction-based tool to pick and
place a deformable package into a bin, where failures can occur at any
stage of the process.

Further complicating the problem, these packages often contain loosely packed
internal objects that shift dynamically based on the robot’s motion. This in-
ternal movement alters the package’s center of mass and deformation char-
acteristics, making it difficult to anticipate failure modes and ensure stable
manipulation. As a result, robotic systems must account for the package’s
external deformability as well as the complex interplay between the internal

object and the surrounding flexible material.

Although suction-based manipulation is effective in handling such complexi-
ties, several failure modes can still disrupt the process, leading to inefficiencies
in the form of slower trajectories and the risk of potential package damage if
trajectories are too fast. The three primary failure modes (Refer Fig. 4.3)
encountered when handling deformable packages include: (1) Loading Fail-
ures: The suction cup fails to establish a secure grip, often due to insufficient

suction or improper seal due to excessive surface irregularities; (2) Peeling

51

failure: Wrinkles or folds in the package can cause premature loss of suction,
resulting in the package detaching from the end effector and (3) Shear fail-
ure: Rapid movements or improper trajectory planning can lead to excessive
lateral forces, breaking the suction seal and causing package drop. These fail-
ures primarily stem from the way the package deforms during manipulation
and how the internal object motion further influences these deformations. The
interaction between the shifting internal mass and the flexible packaging mate-
rial introduces instability, making it challenging to predict and prevent failure

modes.

Figure 4.3: Ilustration of three failure modes in package handling,
primarily caused by wrinkles from package deformation and the dynamic
motion of the internal object

Human operators effortlessly adapt to such variability in package shape, weight
distribution, and internal motion, building an intuitive model of the deformable
package-object system to manipulate it effectively. Similarly, enabling robots
to autonomously handle such packages requires developing a precise model
of this multi-object deformable system, a problem that remains largely unex-
plored in robotics. While challenging, creating such a simulation model could
accelerate the large-scale adoption of robotic automation for these tasks. A

well-designed simulation can predict package deformations and internal object

52

dynamics, allowing for the automated computation of optimal manipulation
trajectories. These trajectories/policies must strike a balance between safety,
minimizing failure risks leading to package drop, and efficiency by executing

trajectories at maximum feasible speeds.

Recent advancements in learning-based manipulation have shown promise in
equipping robots to handle the complexities of deformable package manipu-
lation. These methods are particularly appealing for warehouse automation,
where robots must adapt to diverse package conditions while ensuring safety
and reliability. However, a major challenge of learning-based approaches is
their reliance on large, high-quality datasets to provide informative induc-
tive biases for robust policy training. Data collection in real-world warehouse
environments is expensive and time-consuming due to constantly changing
workspace layouts and package attributes. Even minor variations in package
properties can necessitate extensive fine-tuning, further increasing the data
burden. A common strategy to mitigate this challenge is training robotic
policies in simulation, where data generation is scalable, controlled, and re-
producible. However, to the best of our knowledge, no existing simulation
framework captures both deformable package behavior and internal object dy-
namics, creating a significant gap in transferring learned policies to real-world

settings.

Physics-based simulators are widely used for rigid-body manipulation, but
modeling deformable packages, especially those with internal objects and cou-
pled dynamics, remains challenging due to complex material properties, contact-
rich interactions, and high computational costs. Soft-body simulation 34, 35|
offers a promising solution, enabling high-fidelity physics modeling for efficient
policy learning. Unlike conventional simulation methods, these simulators
leverage structured physics priors, improving data efficiency, reducing sample

complexity, and enhancing generalization. Building on these advancements

53

and addressing the challenges of deformable package manipulation, we develop
a physics-based simulation framework for multi-object deformable packages.
This simulation is designed to compute optimal trajectories for safe and effi-

cient robotic manipulation, ensuring seamless transfer to real-world conditions.

This chapter introduces a physics-based simulation framework for modeling
deformable packages with internal dynamics. The proposed framework uses a
hyperelastic model that captures both package deformation and internal object
dynamics. The model represents the package as a hyperelastic triangular mesh
with bending and elastic properties, while the internal object exhibits inter-
dependent motion within the deformable structure. Suction-based constraints
are incorporated to simulate interactions with a suction gripper, ensuring real-
istic manipulation dynamics. To bridge the sim-to-real gap, real-world defor-
mation data is collected using a motion capture system for system identifica-
tion, refining simulation parameters to match physical behavior. Additionally,
a parallelized simulation environment is developed for scalable, parallelized
training of manipulation policies and trajectory optimization, enabling robots

to adapt to diverse package dynamics.

The contributions of this chapter are summarized as follows:

1. A high-fidelity simulation model of a deformable package with internal

object dynamics

2. A simulation parameter learning framework that employs a structured

loss to capture the nuances of the deformable package system accurately

3. An environment for parallelized training of robotic manipulation policies

in simulation

54

The proposed approach is validated through real-world package transport ex-
periments, demonstrating that the proposed simulation model accurately cap-
tures package deformation and object dynamics. The framework is computa-
tionally efficient and enables robots to adapt quickly to deformable packages
in dynamic logistics settings. By integrating real-world deformation data,
we enhance the development of safer and more efficient manipulation strate-
gies. Additionally, in Section 4.8, we explore how this framework optimizes
package handling efficiency and generates safer, more reliable trajectories for

deformable object manipulation.

4.2 Related Works

4.2.1 Deformable Object Simulation

Researchers have successfully applied simulation across various deformable
materials: 1D (rope) [36], 2D (fabric) [37, 38|, 3D (elasto-plastic objects)
[39, 40], and combinations of liquid, fabric, and elastoplastic objects [41-43].
While these works demonstrate a single-object system in simulation for var-
ious deformable materials, the specific challenges for simulating multi-object
systems with constrained deformations - particularly packages with internal
objects - remain underexplored. Our framework addresses this gap by devel-
oping a hyperelastic model that accurately captures the intricate dynamics of

package-object interactions while maintaining computational efficiency.

Various numerical methods have been applied to the modeling of deformable
objects, each with distinct advantages for particular material behaviors. The
Material Point Method (MPM) has been employed for materials undergo-
ing large deformations and topology changes [39, 44|, while Position-Based

Dynamics (PBD) offers computational efficiency and unconditional stability

55

for real-time applications [36, 45]. The Finite Element Method (FEM) re-
mains the gold standard for accurately modeling hyperelastic materials [40,
46], with implicit integration schemes providing superior stability for stiff ma-
terials. Our work employs implicit Euler integration with FEM to capture the
complex interactions between deformable packages and internal objects while

maintaining numerical stability.

The development of specialized software frameworks has been crucial for mak-
ing simulation accessible and computationally efficient, enabling researchers to
implement complex physical models without rebuilding systems from scratch.
Several notable frameworks [47-49] have emerged recently to address this need.
For multi-physics simulation, GradSim [46] combines differentiable physics
with differentiable rendering to jointly model scene evolutions and appear-
ance. NVIDIA Warp [34], which we employ in our work, incorporates the
computing engine from GradSim, and offers a GPU-accelerated Python frame-
work supporting both rigid and soft body simulation, with particular strengths
in parallel computation and handling complex material models. We selected
Warp for our implementation due to its efficient GPU utilization, flexible ma-
terial modeling capabilities, and robust contact handling, which are essential
for accurately simulating the interactions between deformable packages and

internal objects at interactive rates.

4.2.2 System Identification and Policy Learning

System identification helps calibrate simulation parameters in mathematical
models based on measured data. Differentiable simulation has been applied
to estimate cloth stiffness and elasticity [37, 38, 46], though most studies val-
idated parameter accuracy in simulated environments rather than real-world

settings. Notable exceptions include DiffCloud [50], which utilized DiffSim

56

[47] to perform parameter estimation for cloth in quasi-static states using real
point clouds. In [51], the authors extended estimation to include cloth dynam-
ics using point cloud data. Our work not only aims to calibrate package ma-
terial parameters but also to align internal object positions. To capture more
comprehensive information, we employed motion capture systems to track the

dynamics of both the package and its internal object.

Traditional simulation-based approaches for manipulation policy learning [3,
6, 52, 53] have primarily relied on sampling-based data collection, with lim-
ited focus on multi-object systems. More recent work has explored the ma-
nipulation of elastoplastic objects [54-56] and cloth [38, 57, 58|, advancing
simulation techniques for deformable materials. While studies have begun ad-
dressing deformable package simulation 5] and manipulation constraints [59],
we extend these efforts by developing a high-fidelity multi-object simulation
framework that captures real-world package interactions and enables policy

learning through our high-performance simulation pipeline.

4.3 Problem Formulation

Consider an agent A manipulating a deformable thin-shell package P. Let
Uoackage De the set of parameters governing P’s deformation and dynamic
behavior. The package P contains an object O, which is constrained to move
within P. The dynamics and motion of O are determined by its corresponding
parameter set ¥». Thus, we define a multi-object system consisting of P and
O manipulated by A and represented by the parameter sets {Up, Wp}. This
system as a whole is subjected to external forces Fi,; and constraints C, which

govern its evolution over time.

P is grasped by A via an interface Z, characterized by parameters Aumte,« face-

This interface imposes constraints (C') on P. In our case, Z represents a suction

o7

Control Variables:
1. Robot Trajectory
2. Package and

Offline Data Collection

Parameter Learning

> Dra ’ Dsim

| From Simulation
—

Object Attributes
A7 v
Deformable Object Internal Object
Package Deformations are Observed with Motion Capture System Chamfer Loss MSE Loss
Simulation Model
2 E‘I"p I £"I’DVT’#U
Deformable P - B ian Optimi
Object ke | ayesian Optimizer
Parameters “ |
Simulation l
Iné’emal Oibjeci > Model Parameter Update
arameters Module
T (‘P'Pa ‘PO:P F’O) r

Figure 4.4: Overview of our proposed simulation parameter identification
framework. As depicted, we have a real-world data collection phase, where
we collect a set of robot trajectories and observe package deformation and
object dynamics. Then we learn the corresponding parameters for our
simulation to generate the model of our system.

cup interface between the robot and the package, but our formulation remains
generalizable to non-suction-based interfaces. Similarly, we define Fuo to
describe the interface parameters governing interactions between O and P.
These interface parameters, i.e., u, determine how the objects interact with
each other (see Section 4.4.3 for details). Additionally, the agent A excites
the package-object system by applying external control inputs Uey, primarily
through end-effector trajectories T executed to manipulate P for a given task.
Additionally, we have external forces Fg,: that include gravitational forces

acting on the system.

At a given time instance ¢, we define X/ and Xto as the states of the package
and the object, respectively. Our objective is to learn the parameter sets ¥
and p of a function ® that models the behavior of the package-object system.

Given an external control inputs U, forces Fi,; and constraints C, this function

58

should accurately predict X7 and X©. Thus, we formulate the following

problem:

q)‘lf,u(Fef

xt)

U — xF, x° (4.1)

Where @ represents the simulation model, U? represents the control input
from the commanded robot trajectory 7 at the time ¢, and F.,; denotes the
corresponding external forces acting on the system at time ¢ due to gravity

and the robot’s acceleration.

4.4 Methodology

4.4.1 Overview

To model the function ®, our proposed methodology consists of four key
components (Refer Fig. 4.4): (1) A Real-World Data Collection Stage, (2)
Package-Object Representation, (3) The Simulation Framework, and (4) The
Real-to-Sim Parameter Learning Framework. Our data collection process is
detailed in Section 4.6, where we describe how data is collected in alignment
with our system representation, as outlined in Section 4.4.2. We adopt a
particle-based representation [37] for the deformable package P, a widely used
approach for deformable objects due to its ability to capture intricate de-
formations. Moreover, modeling a closed package containing another object
introduces challenges that require careful considerations during initialization

and simulation, as discussed in Section 4.4.2.

Our proposed framework has the potential to serve as a valuable tool for the
robotic logistics industry and other applications involving deformable objects,

where learning safe and efficient policies is important. Therefore, the choice

59

of the simulation environment is crucial, as both simulation fidelity and com-
putational efficiency directly impact performance. Recent advancements in
soft-body simulators have made them strong candidates for learning complex
manipulation policies [42]. These simulators provide access to high-fidelity de-
formation information, enabling end-to-end learning of manipulation policies.
As described in Section 4.4.3, we employ NVIDIA Warp as our simulation envi-
ronment due to its GPU acceleration capabilities, which enhance computation
efficiency in optimization while maintaining high fidelity through advanced

representations of deformable objects.

A key component of our system is the Bayesian optimization-based parameter
learning module, which, given real-world data, minimizes the real-to-sim gap
by learning the desired parameter set ¥ of the function ®. This is achieved
by reducing the discrepancy between observed system states in the real world
and their corresponding behavior in the simulation environment (Refer to Sec-
tion 4.4.4). Through this approach, we construct a simulation framework that
facilitates robotic manipulation of deformable packages containing dynamic
objects. Additionally, we demonstrate how this simulation model can be lever-

aged to learn manipulation policies for package transport in Section 4.5.

4.4.2 System Representation

The package P is modeled as a two-layer hyperelastic shell structure with
thickness ¢, discretized in a particle grid M x N x 2. This dual-layer ap-
proach effectively captures the physical structure of packaging materials with
finite thickness, enabling the model to represent realistic deformation behav-
ior of both the upper and lower surfaces during manipulation. The surface is
tessellated into triangular elements, with each 2 x 2 particle cell subdivided

into two triangles. As illustrated in Figure 4.5a, the first triangle is formed

60

by connecting the bottom left particle with its right and upper neighbors,
while the second triangle connects the top right particle with its left and lower
neighbors. This tessellation approach ensures a balanced distribution of de-
formation forces across the surface. The three particles group is modeled as
a triangular finite-element unit characterized by elastic stiffness k¢; ., damp-
ing k¢; 4, and adhesion kg4, which collectively form part of the parameter
Up governing P’s deformation. To capture out-of-plane deformation behav-
ior, bending elements are introduced between adjacent triangular elements.
The calculation of bending energy follows the formulation proposed by [60],
which models the angular displacement between neighboring triangles, and the
bending component is modeled as an edge and measured using elastic stiffness
Kedge,e and damping kegge 4, Which are remaining parts of the parameter set
Up. The edges connecting two layers also share the same structure of triangles

and edges.

The interface Z between agent A and package P consists of n suction cup units
arranged in a circular configuration, where each suction cup is positioned at
an angle 0;, where ¢ € {1,2,...,n}, along a circle with a radius rc,, from the

center. Each suction cup unit is modeled as a particle grid.

The particle grid with dimensions Ngup x NP representing circumferential
and radial discretization of the cup contact surface is shown in Figure 4.5b.
This grid is represented as a hyperelastic shell structure parameterized by
elastic stiffness keyp e, damping keyp 4, and adhesion keyp o. For the cylindrical
portion, we use a hollow cylinder-shaped particle grid discretized as Ngyl X
NP x N2, This hyperelastic mesh is constructed using tetrahedral FEM
elements with a Neo-Hookean energy density following [61]. The cylindrical
component is parameterized by Lamé parameters fi., and M.y, and damping
Ecyi,q. This comprehensive representation enhances the fidelity of deformation

behavior under vacuum-induced stress.

61

The vacuum-based adhesion phenomenon is represented by the interface pa-
rameters Apmter face characterizing the interaction between the suction cups
and package through a system of radially distributed springs connecting the
cup’s ring-shaped particles to the closest particles on the upper layer of the
package. Each connection is characterized by a spring stiffness ksp,. and
damping coefficient kg, 4 as part of Albinter face- While this simplification does
not explicitly model vacuum forces, it captures the essential mechanical cou-

pling between the suction cup and package surface during manipulation.

The internal object O is represented at the center between the two deformable
layers of P. The interface parameters ” o describe the contact between O
and the package layers, defined as soft contact characterized by contact stiff-
ness kcon,e, damping kcon ¢, and friction coefficient jicon. This representation
accounts for the challenges of modeling a closed package containing internal
objects, particularly how these contents influence deformation behavior during

manipulation.

This system representation forms the foundation for our simulation framework
described in Section 4.4.3, enabling the implementation of the function ®y ,

t

that maps external forces F!,, and control inputs U’ to the states of the

[&

package X/ and object X

4.4.3 Simulation Framework

Simulating a complex multi-object system with deformable components, as
in this work, presents unique challenges. The model must accurately cap-
ture the nuanced deformations of a two-layered package under manipulation
constraints, external forces, and gravity while also handling contact dynamics

and suction-based coupling. In logistics and warechouse automation, where

62

(a) Package particle cell unit (b) Suction cup unit

Figure 4.5: System Representation Overview: Each element of the package
and suction cup is modeled using particles connected by edges to simulate
elasticity and bending. Additionally, particle radius accounts for adhesion

and compression in the deformable components.

63

speed and efficiency are critical, high-speed simulation is essential for seam-
less deployment. This demands a high-fidelity framework that supports cou-
pled multi-object interactions with diverse material properties. High-fidelity
physics information enables safe trajectory optimization and policy learning,
ensuring fast, safe, and reliable package handling. Additionally, the simulation
must balance fidelity and computational efficiency to enable precise system

identification and execution in practical robotics applications.

Soft-body simulators offer a crucial advantage over traditional physics engines
by addressing key challenges in modeling complex deformable interactions.
They achieve this through two main capabilities: (1) they enable efficient opti-
mization by providing structured representations of system dynamics, allowing
for more precise policy learning, trajectory optimization, and system identifi-
cation compared to sampling-based and finite-difference approaches. (2) They
leverage parallel computing architectures to achieve high-speed simulations,
sometimes running significantly faster than real-time for simpler systems, even

in scenarios involving intricate contact dynamics and deformable objects.

When evaluating potential simulation frameworks for our application, we con-
sidered several critical factors as mentioned above: high-fidelity physics, ma-
terial model flexibility, computational efficiency, and extensibility for imple-
menting custom physics for specialized components like suction cups. Af-
ter comparing several options including DiffTaichi[48], MJX][62], and Nvidia
Warp[34]. We selected Warp as our simulation framework due to its compre-

hensive fulfillment of these requirements.

While DiffTaichi offers flexibility for modeling dynamical systems, it lacks
essential features such as URDF import and kinematic chain generation, re-

quiring extensive custom implementation compared to general-purpose physics

64

engines. Similarly, MJX struggles with handling large numbers of contacts ef-
ficiently, as it precomputes all potential contacts rather than resolving them
dynamically. In contrast, NVIDIA Warp leverages parallel computation to
accelerate simulation while providing built-in physical models and integrators
that streamline development. Its support for FEM techniques makes it well-
suited for our package-object system, and its interoperability with PyTorch
facilitates seamless integration with learning-based frameworks. By distribut-
ing particle updates, constraint solving, and contact resolution across GPU
cores, Warp enables high-speed simulation, achieving rates exceeding 60 Hz

even for complex systems with over 1,000 particles.

Figure 4.6: The simulation of the deformable package, suction cup, and
internal object in our proposed simulation environment

Our implementation (Refer Fig. 4.6) leverages several key components of
the Warp framework to realize the system representation described in Section
4.4.2. We use Warp’s particle system to represent the vertices of both the
package’s two-layer structure and the suction cup array, constructing trian-

gular meshes according to our earlier definitions. The force computation for

65

hyperelastic materials and rigid bodies is handled by Warp’s built-in semi-
implicit Euler integration scheme. For actuation, trajectory control inputs are
converted to timestamped velocity commands for the suction cups, which we

implement through a customized kernel function.

Warp’s GPU-accelerated computation, efficient contact handling, and soft-
body physical modeling capabilities make it an ideal framework for simulating
and optimizing our complex package-object system. Its ability to efficiently
model large-scale deformable interactions enables accurate system identifica-
tion and rapid policy learning, overcoming the computational bottlenecks of
traditional simulation methods. This approach directly addresses the chal-
lenges of robotic manipulation in logistics, ensuring both high-fidelity simula-

tion and scalable deployment.

4.4.4 Real-to-Sim Parameter Identification

The package (P), Object (O), and the suction cup system are characterized
by a set of parameters, (U,), as described in Section 4.4.2, that governs
specific aspects of the system’s response to external forces and constraints. For
instance, the parameters ke . and ky,; ¢ primarily influence the deformation
behavior of the package, whereas k.on . predominantly affects the motion of
the object O inside the package. Recognizing these distinctions is crucial, as
it informs the design of our learning framework for parameter identification.
Leveraging this understanding, we develop a method to infer these parameters

from real-world data (see Section 4.6).

Now, given that our simulation model represents the deformable package P as
a system of particles with grid size M x N x 2, it is crucial to collect real-world
data that provides congruent information for learning the simulation parame-

ters. Additionally, tracking the position of the internal object O is essential.

66

Section 4.6 details our experimental setup and data-collection strategy to ob-
tain this information. Specifically, we employ a motion capture system with
reflective markers placed on the package, the object, and the suction tool to
record timestamped trajectory data. Consequently, our observation set O con-
sists of timestamped position data of the package particles, the object, and the
robot end-effector, i.e., the suction tool’s position and orientation. Notably,
these markers are required only during the training phase; during execution,
our model can infer this information seamlessly. Thus, no markers or motion

capture system are needed for actual robot deployment (see Section 4.6).

From our data collection framework, we receive access to a dataset of times-

tamped trajectories Dyeq = {77 cal Ty eal ., T;L"e“l}. Where,

7_real _ {(X(r)‘eal Ugeal) (X{‘eal U{eal) (X,‘?Z:eal U%eal)}

n

is a timestamped trajectory consisting of information of system state X
and the corresponding control input U; at a given time instance t. Here
X; = {XZ),XtO} is the state of package-object system. The control inputs
U; are the robot’s end-effector position, orientation, velocity, and acceleration
parameters at a given time t. Now, given this dataset D,¢q;, We use our sim-
ulation framework described in Sections. 4.4.2 and 4.4.3, where we initialize
the P and O with the corresponding initial states and constraints. During
initialization, we can only control U,, i.e., the control input, and the con-
straints, i.e., the contact between the suction cup and the package. Under the
external forces, the package-object system assumes a state Xgim. We then
simulate the entire trajectory ;" cal in our simulation environment and observe
the corresponding states at the timestamps ¢t = 0 : T'. This process constructs

a corresponding dataset of simulated trajectories, Dg;,,, which we use to learn

the simulation parameters ¥. Our parameter estimation framework is detailed

67

in Algorithm 2, where we employ the Bayesian optimization [63] framework

to optimize W.

Algorithm 2: Learning Simulation Parameters via Bayesian Optimization

o N O Gk W N

©

10
11
12
13
14

15

Data: Real-world Trajectory Dataset: Di.cq;

Input: N : Number of Optimization Iterations,

®: Deformable Simulation Model,

F,yi: External Force (Gravity),

G: Gaussian Process Surrogate Model

Result: V7, \II*O,P py: Optimized Simulation Parameters
Initialize: Initialize search space for ¥p, Vo, P up

Fit initial Gaussian Process G using random samples
1=0

while 7 < N do

for Tg;t“clh € Dyeqs do

Sample candidate parameters Up, W, ¥ o from acquisition function
Xiwen = ©(Up, 00,7 po, Upgty,)

£l‘)1jl?t>ch — CD(Xreal — X sim)

barch 'Pboitch Pbatch 9

atlcC — rea. _ S1m

ﬁq/o,Puo - ’ ‘Xobatch Obatch ’ ‘2
_ pbatch batch

ﬁbatch - »C\I;P + E\pO’PuO

Update G with new observation (¥p, ¥o,” 1o, Lyaten)

Select the next parameters by optimizing the acquisition function over G
f Lygten < Lmin then

»Cmin = Ebatch

‘I/;; +— Up

\I/*O +— Uy

| Py <" po

T4+

e

As discussed in Sections 4.4.1 and 4.4.2, each parameter in the full parameter
set U contributes uniquely to the system’s dynamics. To ensure our opti-
mization framework captures this structured influence, we design distinct loss
functions that appropriately guide the optimization process. Specifically, for
optimizing the package parameters, we employ the Chamfer loss, defined as

follows:

68

1 , l :
Ly, = S| Z man||z; " — X5 |2+
P real real
T v eXy

1 . . I
2| g™ Z min||z5"™ — X5 o (4.2)

Chamfer loss is well-suited for training because it directly minimizes the dis-
crepancy between simulated and real particle positions, ensuring that the sim-
ulated package deformation closely matches real-world behavior. By penal-
izing the distance between corresponding particle sets in a trajectory pair

sim

(7.1 ’ Treal

7eat), Chamfer loss enforces fine-grained spatial alignment without re-

quiring explicit point correspondences. This makes it particularly effective for
capturing complex deformations, as it naturally handles variations in particle

distribution while maintaining robustness to minor noise in the dataset.

Similarly, for optimizing the object parameters Wy and the interface parame-
ters ¥ o, we utilize the Mean Square Error (MSE) loss function to effectively

guide the optimization of these parameters:

Lyoruo = IIX5" = X513 (4.3)

We specifically rely on O’s state observations for optimizing the interface pa-
rameters, as our experiments indicate that O’s position is primarily influenced
by these parameters, which govern contact forces and friction. Thus, our opti-
mization process jointly refines the simulation parameters to enhance accuracy.
The overall loss function, Lp, as defined in the Algorithm. 2 is the weighted
sum of the individual loss terms in Eqs. 4.2 and 4.3, ensuring that each set
of parameters is optimized accordingly. This structured approach allows us

to learn simulation parameters that accurately reproduce the dynamics of our

69

multi-object system. Furthermore, as outlined in Algorithm 2, we optimize
the parameters using the Bayesian optimization framework over N epochs.
Bayesian optimization excels in efficiently exploring the parameter space, es-
pecially when the objective function is complex, noisy, or expensive to evaluate.
A key component of this framework is the acquisition function, which guides
the search for optimal parameters by balancing exploration and exploitation.
The acquisition function evaluates the utility of sampling a particular set of
parameters based on the current probabilistic model of the objective function.
By selecting the parameters that maximize the acquisition function, we en-
sure that each iteration improves our understanding of the parameter space

and helps identify regions with high performance.

In our approach, the acquisition function helps us prioritize promising regions
for parameter updates, ensuring that we avoid redundant evaluations and focus
computational resources on the most informative areas. This leads to stable
convergence with fewer iterations, making the optimization process computa-
tionally efficient while maintaining high-quality results. The combination of
the probabilistic model and the acquisition function makes Bayesian optimiza-
tion particularly powerful for parameter estimation tasks, enabling robust and

reliable learning even with limited data.

4.5 Manipulation Policy Learning

The proposed simulation model is designed to support both online planning
and offline learning of safe and efficient manipulation policies. Prior work
[64] has demonstrated the importance of simulators in enhancing the learning
of manipulation policies, particularly for complex robotic tasks, by providing
valuable inductive biases. Our framework leverages these biases to enable both

data-driven policy learning and model-based trajectory optimization. The

70

ability to capture high-frame-rate deformation information further enhances
the model’s applicability to online planning, offering a powerful solution for

tackling dynamic manipulation tasks with precision and efficiency.

One of the standout features of our approach is the use of NVIDIA Warp,
a CUDA-based framework optimized for GPU computation. Massive paral-
lelization is essential for reinforcement learning (RL) applications, as training
requires extensive exploration across diverse scenarios. By leveraging GPU
acceleration, we simulate multiple training instances simultaneously, drasti-
cally reducing policy optimization time. This level of parallelism is crucial
for large-scale learning, where sample efficiency and computational speed are

fundamental constraints.

In high-mix, high-volume environments such as logistics and warehouse au-
tomation, where speed and efficiency are crucial, this parallelism marks a
significant advancement in policy learning. The ability to train and refine
policies at scale enables the rapid deployment of learned behaviors in real-
world applications. While the primary focus of this work is on our simulation
model and parameter identification framework, we also highlight the practical
applicability of our differentiable simulation system by implementing an RL
Gym [65] environment. This open platform enables the robotics community
to train their own RIL-based manipulation policies efficiently and in a scal-
able manner. Additionally, our simulator facilitates model-predictive control
(MPC), enabling the optimization of robot trajectories for safe and efficient
motion generation. This capability is crucial for handling deformable objects
in real-world applications, ensuring that the resulting motions adhere to safety

constraints while maximizing efficiency.

71

As a demonstration, we train a Proximal Policy Optimization (PPO)-based
policy for package transport. The primary objective of this policy is to min-
imize the internal object movement within the package and reduce its de-
formation curvature near the suction cup to ensure stable grasping. This
example highlights how our simulator enables large-scale policy learning while
maintaining physically meaningful constraints that are crucial for real-world

deployment.

By integrating high-fidelity physics with reinforcement learning and model-
based control, our approach bridges the gap between soft-body simulation and
practical robotic policy deployment. The ability to train and optimize policies
at scale makes it a valuable tool for advancing deformable object manipulation

in industrial settings.

4.6 Experiments and Data Collection

4.6.1 Experimental Design

Our experimental setup consists of a 7-DOF KUKA LBR iiwa robot, cho-
sen for its impedance control capabilities, which facilitate the handling of
deformable packages during trials. The robot is equipped with a four-suction
cup tool connected to a 9 CFM vacuum pump with a 1.5-micron ultimate
pressure via a manifold (see Fig. 4.7). Suction control is handled by a relay
operated through an Arduino microcontroller. To systematically study the
effects of robot motion on both the package and its internal object, we de-
signed a trajectory that captures a range of dynamic movements relevant to
real-world logistical settings. The trajectory simulates a pick-and-place opera-
tion, where a package is lifted from a conveyor belt and placed into a bin. The

final placement orientation varies from horizontal (0°) to near-vertical, with

72

Figure 4.7: The experimental setup with a 7 DOF kuka LBR iiwa Robot.
A suction tool is attached to the robot that is connected to a 9 CFM
vacuum pump. The suction cups selected in this task are rated to handle
such objects specifically

73

three distinct angles: 30° (low), 45° (medium), and 60° (high). The trajec-
tory consists of three primary motions: a linear motion, followed by a circular
motion, and an orientation change at the final placement stage. To further an-
alyze motion effects, we vary joint velocity and acceleration, categorizing each
into three levels: low, medium, and high. Each of these trajectory variations
reflects the changes in U,q;. The test package measures 10x12 inches and
contains a 3D-printed internal disc of 160 mm diameter. The internal mass
is also varied across three levels: 0.5 lbs (low), 0.75 lbs (medium), and 1 lbs
(high). We collect a total of 27 distinct timestamped trajectory data points
corresponding to 1 package, 3 placement orientations, 3 mass variations, and
3 velocity conditions. Fach trajectory lasts an average of 6 seconds, and we
neglected the failure scenarios since the focus was mainly on the dynamics.
Our data acquisition framework operates at 250 Hz, providing high-resolution
motion data that captures detailed package deformation over time. Despite
the limited number of 24 trajectories after filtering the failure scenarios, the
high temporal resolution of the data ensures sufficient detail for learning the

parameters effectively.

A key component of our data collection framework is a 6-camera OptiTrack
motion capture system, which is primarily used to track the deformation of
the package. OptiTrack’s Motive 2 software streams data from these cameras,
allowing us to track the positions of individual reflective markers or defined
rigid bodies and compute their corresponding SE(3) poses with a submillimeter
accuracy in tracking. As discussed in Section 4.4.2, our simulation represents
the package P as a particle-based system. To emulate this in the real world,
we affix N 2D reflective markers to the package, effectively creating a particle-
based representation. The (x,y, z) positions of these markers are tracked in
Motive 2, providing high-fidelity deformation data. Thus, the state of the

package at a time instance t is represented by the position of these markers

74

Xp = [z, vi, zz]f\i ;- To ensure accurate tracking of both the package and its
internal object, we make a design choice to use transparent packages. This
allows us to track the internal object without additional engineering efforts
for time synchronization. We acknowledge that real-world logistics settings
typically involve non-transparent packages. However, our primary objective
in this work is to establish a proof of concept demonstrating that our simu-
lation framework can handle such systems. For non-transparent packages, an
alternative approach involves using an external force-torque sensor to estimate
the center of mass (CoM) of the internal object. This would require additional
engineering, particularly for time synchronization and ensuring reliable CoM
estimation. In this study, we opt for transparent packages to simplify data
collection while maintaining the visibility of the internal object. For track-
ing the internal object, we use spherical reflective markers and define it as a
rigid body in Motive 2 (see Fig. 4.8). This setup allows us to capture both
position and orientation relative to the motion capture system’s base frame,
ensuring accurate and consistent tracking. For simplicity, we only consider the

Cartesian position of the object, and thus Xp = [zo, yo, 2z0].

4.6.2 Processing of Motion Capture Data

The timestamped data collected from the motion capture system is inherently
noisy, primarily due to marker occlusions and the presence of spurious reflec-
tions from other reflective surfaces in the camera’s field of view. These spu-
rious reflections can result in erroneous marker detections, which we mitigate
through precise calibration. Specifically, during data collection, we execute
predefined trajectories and manually mask out any spurious markers that ap-
pear. This ensures that reflective surfaces incorrectly tagged as markers are
eliminated from the dataset. To further improve robustness, we enforce a mini-

mum difference of 10 mm between the inter-marker distance of the 2D markers

75

Figure 4.8: The package and the corresponding inside object with the
motion capture markers. We also illustrate a sample trajectory that is
collected from the motion capture. We can observe that at certain time
instances, the package markers can disappear, thus entailing the adoption
of advanced data-processing methods.

76

on the package and the spherical markers on the internal object. This pre-

vents marker misidentification, where the system might erroneously associate

one marker’s identity with another.

A key challenge in post-processing arises due to marker occlusion, where mark-

ers temporarily disappear from the tracking system. Since OptiTrack’s Motive

2 software does not provide marker identification and tracking across trajectory

for deformable bodies,! we introduce a comprehensive filtering methodology

to estimate missing marker positions:

1.

Noise Reduction: We first apply a low-pass Butterworth filter to the

timestamped marker trajectories to eliminate high-frequency noise X¢(t) =

ﬁX(t). where X ¢(t) is the filtered signal, X (t) is the raw marker
()

position, f. is the cutoff frequency, and n is the filter order. The band

gain is set to 1.

. Hungarian Matching-Based Reassignment: If a marker disappears, we

check whether it has been reassigned a new ID by using the Hungarian
algorithm for optimal matching. Specifically, we solve for the best match
between the missing marker p; and the detected markers at time ¢, M (%),
based on their available neighbor information. The assignment cost is
minimized by:p; = argmin, c () lpj— ﬁl(t) I, where ﬁgt) represents the set
of neighbor positions associated with the missing marker at the current
time step. If the cost is below a predefined threshold e, the marker

is reassigned based on the optimal matching result. If no neighbors are

available, we discard the position information by assigning it a zero-mask

IThis functionality is available in Motive 3, but for the scale of deformations in our setup, it remains

intractable.

7

3. Velocity-Based Interpolation: If reassignment fails, we estimate the miss-
ing position using first-order derivative-based interpolation under the as-
sumption of local smoothness: p;(t) = p;(t — 1) + v;(t — 1) - At, where,
vi(t—1) = %}W is the estimated velocity of the marker.

4. 1D Interpolation for Long Occlusions: If data is missing for a longer win-

dow, we perform 1D linear interpolation using adjacent marker positions,

defined by p;(t) = pi(t1) + tt;:gl (pi(t2) — pi(t1)). where t1 and t9 are the

nearest available timestamps.

If none of the above methods successfully reconstruct the missing marker po-
sitions, we discard the affected timestamps from our dataset. Ultimately,
our filtering strategy enables us to retain 98% of the timestamped data from
the collected dataset for downstream parameter learning while ensuring high-

fidelity deformation tracking.

4.7 Results

In our experiments, we aimed to evaluate key aspects of our parameter learning
framework to assess its effectiveness. Specifically, we sought to answer the

following questions:

1. How accurately does our simulation framework predict real-world package
deformation and internal object dynamics?

2. To what extent does our method generalize to variations in control pa-
rameters and object mass?

3. How well does our proposed simulation model perform on unseen scenar-

ios in a held-out test dataset?

With these evaluations, we aim to provide a comprehensive assessment of

our simulation framework’s fidelity, robustness, and generalization capabilities,

78

highlighting its potential for real-world deployment in robotic manipulation

tasks.

4.7.1 Parameter Estimation Results

Figure 4.9: Qualitative comparison of simulation vs. real-world predictions.
Blue markers represent simulated positions at a given time step, while
green markers indicate corresponding real-world positions from our test
dataset. The coordinate axes near the markers denote simulated and real
object positions, with the topmost axis representing the tool frame.

The dataset of 24 trajectories was preprocessed using our data-processing
pipeline, as described in Section 4.6.2. We employed a subset sampling strat-
egy to divide the data into training and testing sets to ensure a fair and
representative evaluation. Specifically, for the test set, we aimed to assess the
generalization of our method on unseen cases. To achieve this, we selected tra-
jectories with medium velocity, medium acceleration, and medium orientation
for a given package and mass combination. These conditions fall within the
overall distribution of the training data but are not explicitly included, allow-
ing us to fairly evaluate generalization. Based on this strategy, we allocated
four trajectories for testing. This resulted in a final split of 20 trajectories for
training and 4 for testing. All data was normalized using a min-max normal-
ization approach before training. We implemented the Bayesian optimization

framework with Bayes-Opt library [66]. We trained our model for 100 epochs

79

and reported the best-performing parameter values on the training data in

Table 4.1.
Object Package
Dataset MSE | (m) CD | (m)
mean | max std mean | max std

Train | 0.0006 | 0.003 | 0.0006 | 0.032 | 0.036 | 0.003
Test 0.0008 | 0.001 | 0.0003 | 0.033 | 0.038 | 0.003

Table 4.1: The performance of the parameter estimation framework. The
error values reported here are the chamfer distance of package state and
mean-square error in object state prediction in meters.

Table 4.1 highlights the effectiveness of our parameter estimation framework
in accurately predicting both the package and internal object positions. The
error values reported confirm that our simulation model effectively captures
the intricate interactions between the deformable package, the internal object,
and the external constraints imposed by the robotic manipulator. The chamfer
distance estimation for the package loss, which is 0.033 m, demonstrates that
our model successfully captures the package deformation [67], especially for
such a complex dynamic deformable object. Additionally, the mean error of
0.0006 m for the internal object shows that the interface contact and object
parameters were appropriately learned. These results validate the learned
parameters’ accuracy and fidelity, suggesting our approach generalizes well to

various control inputs and package configurations (Refer Fig. 4.9).

4.7.2 Optimization Performance Analysis

A key premise of our framework is that accurately modeling the deformable
package system requires selecting optimal simulation parameters. If the loss
landscape were relatively flat, randomly chosen parameters would yield similar
results, reducing the need for optimization. However, in practice, random ini-

tialization often leads to poor predictions, as the loss landscape contains local

80

Figure 4.10: The marker prediction discrepancies are primarily at the
edges, while accuracy remains high near the suction cups, a critical region
for failure detection. This demonstrates that our parameter estimation is
well-suited for computing safe and efficient trajectories, as most errors do
not impact performance.

81

minima that significantly impact performance. Our Bayesian optimizer effec-
tively identifies an optimal set of parameters that enables accurate prediction
of the package and internal object states, which are critical for learning safe

and efficient manipulation policies.

To validate this, we perturb each parameter by a percentage of its optimized
value and analyze its effect on prediction accuracy. Our sensitivity analysis
shows that perturbations within 20% of the optimized value maintain sta-
ble performance with minimal impact on accuracy. However, beyond this
threshold, the simulation becomes unstable, requiring reduced time steps for

integration, which significantly slows down the overall simulation speed.

To validate that our prediction accuracy is sufficient for computing safe and
efficient manipulation policies and trajectories, we analyze the simulation’s
performance. As shown in Fig. 4.10, the primary discrepancies in marker
position predictions occur at the package edges, while markers near the suction
cup engagement points, closer to the package center, maintain high accuracy
(< 0.01m). This demonstrates that despite a chamfer distance of 0.03m, our

simulation model remains effective for generating reliable and safe trajectories.

4.7.3 Simulation Performance Metrics

A critical aspect of our simulation framework is evaluating its computational
efficiency in handling complex multi-object interactions. To ensure high fi-
delity while maintaining acceptable prediction accuracy, we systematically
vary the number of particles representing the package and analyze its impact
on both prediction performance and simulation frame rate. As shown in Table
4.2, increasing the particle count results in a comparable simulation frame rate
but introduces a trade-off between computational efficiency and accuracy. Our

findings suggest that practitioners should fine-tune the particle count based

82

on their specific accuracy and performance requirements. Another key consid-
eration is hardware memory limitations. All our evaluations are conducted on
an NVIDIA GeForce RTX 3060 12 GB GPU, where instantiating more than
1612 particles leads to memory overload. Furthermore, Fig. 4.11 demonstrates
that reducing the particle count can lead to inaccurate package deformation,
ultimately degrading prediction performance, which aligns with our ablation

studies.

Figure 4.11: Difference in package shape in simulation with reducing the
number of particles. We can see that fewer particles can lead to poor
performance in capturing the package deformation.

Num Particles | Frame Rate (FPS) 1 | Package CD (m) | | Object MSE (m) |
1612 9 0.032 0.0006
1050 10 0.033 0.0007
608 10 0.035 0.0008
286 10 0.037 0.001

Table 4.2: Effect of particle count on simulation parameters and frame
rate. The prediction performance depends on the number of particles. Our
simulation runs in real-time, meaning it takes ¢ seconds to simulate a
trajectory of duration ¢t seconds. We can see that increasing the number of
particles improves the loss without affecting the FPS. However, FPS
remains the same. Increasing the number of particles can cause issues with
available GPU memory.

83

4.8 Discussions

While our primary focus in this work is on developing a deformable simulation
model of the package-object system, its broader impact on package handling
efficiency is crucial to consider. The proposed model significantly enhances the
balance between safety and efficiency across key manipulation stages: pick-
up, transport, and placement. Each of these steps demands precise trajectory
computation to minimize failures that could result in package damage. In our
prior [59], we explored trajectory optimization for fully filled packages, but
it did not capture the complexities introduced by partially filled deformable
packages with a moving object. In this work, our proposed multi-object model
addresses this gap by providing a more adaptable and accurate simulation
framework, enabling robots to handle a wider range of package conditions with
improved reliability and efficiency in computation that translates to process

efficiency.

Our GPU-based simulation framework implementation enables more efficient
training times, with an observed 30% reduction compared to non-GPU-based
models. By accelerating trajectory optimization and improving convergence
speed, our approach reduces the number of iterations required to find an opti-
mal solution. This computational improvement can potentially decrease over-
all process time by 15% [59]. Furthermore, the ability to explicitly model fail-
ure cases |5] enhances robustness, with a potential failure reduction of 20%.
Internal object movement within the package plays a key role in suction-based
grasp failures, and our approach allows for precise simulation and tracking of
these dynamics. By optimizing trajectories to minimize internal object mo-
tion, we reduce instability and the risk of package damage. Unlike conventional
rigid-body simulators, our approach dynamically adapts to variations in pack-

age shape, weight, and contents, allowing robots to respond to disturbances

84

up to 2-5 times faster, ensuring more reliable real-world deployment without

extensive manual tuning.

Although our simulation framework is designed to be differentiable, maintain-
ing smooth and stable gradients within the NVIDIA Warp framework proves
challenging. This difficulty arises from the inherent complexities of simulating
deformable objects, where small numerical or algorithmic inconsistencies can
introduce noisy gradients, particularly when accounting for non-linearities,
contact dynamics, and material deformations. The gradients may become
unstable or imprecise in high-dimensional, dynamic environments, where the
relationships between simulation parameters and physical behaviors are in-
tricate. Such noisy gradients can degrade the performance of gradient-based
optimization methods, leading to suboptimal solutions or slower convergence

due to erratic updates.

In contrast, Bayesian optimization is particularly well-suited for these types
of scenarios. Unlike gradient-based methods that depend on precise gradient
information, Bayesian optimization treats the objective function as a black
box and constructs a probabilistic model. This allows it to explore the param-
eter space effectively without relying on gradients, making it more resilient to
noisy or unreliable signals. By incorporating prior knowledge and carefully
balancing exploration with exploitation, Bayesian optimization can navigate
the parameter space efficiently, even in the presence of noise or limited data.
Furthermore, since Bayesian optimization updates its model iteratively based
on fewer but more informative evaluations, it mitigates the impact of noisy
gradients, leading to more stable optimization. Given these advantages, we
have opted to rely on Bayesian optimization rather than exploiting the differ-

entiability of our simulation framework in this work.

85

4.9 Summary

In this chapter, we presented a high-fidelity simulation framework tailored
for modeling shell-like deformable objects, specifically, deformable packages
containing internal objects that exhibit dynamic motion. Unlike traditional
approaches focused on 1D or 2D deformable structures, this work tackled
the challenges unique to packages encountered in warehouse and logistics au-
tomation, where internal mass movement significantly complicates external

deformation behavior.

A physics-based, GPU-accelerated simulation environment that captures both
the elastic behavior of the package shell and the coupled dynamics of the
internal object is introduced. This framework enables accurate modeling of
complex phenomena critical for robotic manipulation, including shape changes
under suction contact and dynamic shifts in the center of mass during trans-
port. To ensure that simulated behaviors faithfully match real-world physics, a
Bayesian optimization approach for simulation parameter learning, grounded
in motion-capture deformation data, is proposed. Furthermore, a structured
loss formulation is developed that provides more informative gradients during
parameter optimization, improving the robustness and accuracy of the learned

simulation models.

In addition to modeling contributions, we created a comprehensive experimen-
tal testbed for real-world data collection and parameter identification, and de-
veloped a parallelized Gym environment to enable scalable policy training for

robotic manipulation of deformable packages.

Extensive evaluations validated that the proposed simulation framework gen-
eralizes well to real-world scenarios, accurately capturing both external de-
formations and internal dynamic effects. By enabling policy learning in a

physics-informed environment, this work lays the foundation for safer, more

86

efficient, and more adaptive robotic handling of deformable packages in semi-

structured industrial environments.

Overall, this chapter demonstrates that physics-informed, structure-aware sim-
ulation modeling provides a powerful tool for tackling one of the most chal-
lenging frontiers in robotic manipulation: the safe, reliable handling of de-
formable packages under uncertainty. This work underscores a central disser-
tation theme—that combining physical priors with learning-based approaches
is key to enabling the next generation of intelligent, adaptable robotic systems

for real-world industrial applications.

87

Chapter 5

Graph-Based Neural Dynamics of Shell-Like

Deformable Objects

5.1 Introduction

Figure 5.1: Accurate initialization in the FEM-based simulation can be
challenging. Since the simulator solves for the complex interactions, the
initial state of the package and the object can have uncertainty associated
with them, which can propagate as an error for a given trajectory.

Chapter 4 introduced a finite element method (FEM)-based approach for sim-
ulating shell-like deformable objects using a particle-based thin-shell represen-
tation. While the FEM-based method offers advantages such as high-fidelity
modeling, minimal data requirements, and the capability to manage complex
interactions, it heavily depends on semi-implicit Euler integration for solving

the forward dynamics. The semi-implicit Euler integration method produces

88

time-discretized approximate solutions for the forward dynamics of the sys-
tem’s state (X¢41, Xt+1). The stability of this integration method is closely
tied to the chosen integrator time-step (At), necessitating a delicate balance
between stability and computational efficiency. Small time-steps enhance sta-
bility but at the expense of increased simulation times. Moreover, determining
an optimal time-step is complicated further by its sensitivity to simulation
parameters and initial conditions, which introduces additional complexity to

FEM-based modeling.

Another significant challenge with FEM-based simulations lies in accurately
initializing the system state, particularly for composite configurations involv-
ing a thin-shell deformable package and an internal rigid object (refer to Chap-
ter 4). The system’s settled state is highly sensitive to simulation parameters
and the initial positioning of mesh entities, leading to initialization uncertain-
ties that propagate through subsequent simulation steps, causing discrepancies
between simulated and real-world behaviors (Refer to Fig. 5.1). While meth-
ods exist to alleviate this issue, such as pre-learning static deformation before
applying external dynamics, they introduce additional complexity to the op-

timization process and data collection.

Furthermore, despite successfully demonstrating FEM’s capability in modeling
various materials, finding feasible solutions under complex constraint scenar-
ios remains challenging. The limited number of FEM parameters (only 11)
constrains the accurate representation of intricate interactions among rigid
and deformable components within the system. FEM effectively captures the
overall shape of the package but tends to fall short in modeling the subtle
deformation details and surface curvatures induced by external control inputs

[59].

89

Regardless of all these challenges, retaining a structured particle-based mesh
representation is advantageous due to its capacity to effectively encode spa-
tial distributions and relationships. However, what one needs is to overcome
the shortcomings of the semi-implicit Euler integration, complex interactions
(rigid-deformable), and uncertainty in initialization. To achieve this, we turn
our attention to Graph-based Neural Dynamics (GND) [68]| that exhibit the
desirable properties for simulating complex deformable objects. GND models
represent objects as graph nodes connected by edges encoding spatial relation-
ships, and leverage multi-layer perceptrons (MLPs) to predict forward system
dynamics. GNDs have recently gained prominence due to their robust capa-
bility to simulate large-scale and complex deformations, alongside significantly
easier initialization, as the initial node positions can be directly captured from

observations.

This chapter extends the graph-based neural dynamics framework to effec-
tively manage intricate rigid-deformable interactions by explicitly grounding
them in material parameters. By embedding these physical parameters into
our model, we incorporate critical physics-based priors that enhance predictive
accuracy. Additionally, we exploit the natural shape-retention property of de-
formable packages (see Section 5.5.5) by proposing a specialized loss function
designed to capture realistic deformation characteristics. To summarize, the

key contributions of this chapter are:

1. Development of a graph-based neural dynamics model capable of accu-
rately simulating thin-shell deformable objects interacting with internal
rigid entities and deformable suction-cup attachments, while simultane-

ously predicting internal object dynamics.

90

2. Introduction of a training methodology that explicitly embeds material
parameters and leverages a shape-retention loss, ensuring alignment of

simulated dynamics with observed real-world deformation behaviors.

5.2 Related Works

Graph Neural Networks (GNNs) have rapidly emerged as a powerful paradigm
for learning the dynamics of physical systems that can be naturally cast as
graphs, where nodes represent particles or rigid bodies and edges encode their
interactions [69]. Early demonstrations showed that GNN-based models could
accurately predict the evolution of rigid-body ensembles and granular media by
learning force-like message-passing rules directly from data [70]. Subsequent
work extended these ideas to robotic manipulation tasks, using graph-based
dynamics models to plan and control interactions with deformable rope, cloth,

and soft-body objects [71-74].

Despite these successes, most existing GNN-based simulators treat material
properties as either fixed global constants or ignore them altogether, limiting
their ability to generalize across objects with varying stiffness, mass, or damp-
ing. The recent work by the authors of [68] represents one of the first efforts to
incorporate material parameters into a GNN dynamics model, albeit focused
on quasi-static, single-object deformations. To our knowledge, no prior study
has addressed multi-component systems that combine both rigid-deformable
and deformable-deformable interactions, nor has any applied graph-based dy-

namics to thin-shell, package-like objects in a robotic manipulation context.

This chapter fills these gaps by proposing a physics-informed GNN framework
that (i) embeds per-node and per-edge material parameters to capture hetero-
geneous deformability; (ii) models a coupled suction-cup, thin-shell package,

and internal object system, explicitly representing rigid—deformable contact

91

and suction constraints; and (iii) adds a shape-retention regularizer grounded
in physical observations. By doing so, our work extends the applicability of
graph-based neural dynamics from rigid or granular media to complex shell-

like deformable objects with real-world robot control applications.

5.3 Graph-based Representation

Figure 5.2: Graph-based representation of the suction-package-object
system. Nodes represent the deformable suction cup, thin-shell package,
and rigid internal object. Edges encode both intra-entity relationships
(within the suction cup or package) and inter-entity interactions (between
suction cup—package and package—internal object), effectively capturing the
complex spatial and dynamic relationships within the system.

The problem formulation in this chapter closely mirrors the one defined pre-
viously in Chapter 4, Section 4.3. We again consider a package P and an
internal object O, characterized by parameters collectively denoted as ¥, and
their interactions represented by p. While retaining the terminologies and ob-
jectives from Section 4.3, this chapter introduces a nuanced shift by employing

a graph-based representation of the system, as illustrated in Fig. 5.2.

The entire package-object-suction cup system is represented as a structured
graph, composed of nodes that correspond to distinct physical entities and

edges that encode spatial and relational interactions between these entities.

92

Specifically, as illustrated in Fig. 5.2, the graph comprises three distinct types
of nodes: those belonging to the thin-shell deformable package, the deformable
suction cup, and the rigid internal object. Each node is explicitly assigned to

its respective entity type to maintain clarity in the representation.

Edges in the graph are introduced to capture the spatial structure, dynamics,
and inherent interactions within and between entities. The graph contains
two main classes of edges: inter-entity edges and intra-entity edges. Inter-
entity edges model the interactions between different types of entities, such as
connections from the suction cup nodes to the package nodes and from the
package nodes to the internal object nodes. These edges encode interactions
like gripping constraints and contact dynamics. On the other hand, intra-
entity edges represent the internal structure and intrinsic spatial relationships
within each entity, for example, edges connecting neighboring nodes within

the deformable package itself.

These edges are constructed based on criteria such as spatial proximity, known
physical constraints, and the established relational structure of the entities
within the system. Collectively, the nodes and edges form a comprehensive
representation that facilitates capturing the complex dynamics inherent in the
interactions among rigid and deformable components. The attributes utilized
to construct rich and informative embeddings for both nodes and edges, which
ultimately enable accurate prediction of the system’s forward dynamics, are

described in detail in the following sections.

5.4 Message Passing Overview

As previously discussed, a significant advantage of adopting a graph-based
representation is its inherent capability to capture the spatial relationships and

structural dynamics among entities, akin to the FEM-based method outlined in

Figure 5.3: Overview of the graph message-passing framework used to
capture complex interactions among the suction cup, package, and internal
object. Node-level, edge-level, and global-level attributes are embedded and
propagated through successive message-passing layers to model both local
and system-wide dynamics. The output of these message passing layers is
latent representations of the node, edge, and global embeddings, which can
then be further passed to a decoder for downstream dynamics predictions.

Chapter 4. A widely used approach for modeling such relationships in graphs
is the Graph Neural Network (GNN) framework [75], which leverages message
passing to propagate embeddings across graph nodes, encoding relationships

through edges to derive meaningful inductive biases.

The suction-package-object system examined in this study inherently provides
three categories of attributes critical for an accurate and informative graph-
based representation: (1) Node Attributes, (2) Edge Attributes, and (3)
Global Attributes. Each attribute type uniquely captures essential charac-
teristics and interactions within this complex, rigid-deformable system. Specif-
ically, node-level attributes include positional data and entity identification
(e.g., package, suction cup, internal object). Edge-level attributes encapsulate
the relational interactions between nodes, reflecting proximity, constraints, and
physical interactions. Lastly, global attributes encompass external control in-
puts, such as forces applied to the system, and intrinsic system properties like

mass distribution and overall dimensions. The details on how we encode these

94

to generate the corresponding embeddings are given in Sections 5.5.1, 5.5.2,

and 5.5.3.

To effectively model these complex interactions, we build upon the Graph Net-
work Block introduced by the authors in [76]. Their framework naturally aligns
with our requirements, and we extend this message-passing mechanism to ac-
curately represent and capture the dynamics of our suction-package-object
system, integrating the structured graph attributes into our representation to

enhance predictive performance and fidelity.

The message passing framework utilized in our approach involves two key
functions: the encoder function (®), implemented as a Multi-Layer Percep-
tron (MLP), and the scatter function (p), which aggregates and propagates
embeddings throughout the graph. Specifically, we employ the sum oper-
ator (D) as our scatter function to collate information effectively. Within
a message-passing layer, there are three distinct components: (1) the Edge
Block, (2) the Node Block, and (3) the Global Block. Each block consists of
its own dedicated ® and p functions, working cohesively to capture and prop-
agate intricate relational dynamics and interactions, as illustrated in Figure

5.3.

Overall, the message passing steps can be encapsulated by the following equa-

tions:

8;; = ¢e(eka Ury s Usy s U) ég = peHC(Ez/') (5'1>
o= (i) & = U 52)
o = (Z)u(él,@/,lt) T = pvn—m(v/) (5.3)

Where, V' = {v;}i=1.nv is the set of nodes with cardinality NV, and each

v; is the node’s attribute. Similarly, the set of edges with cardinality N€ is

95

represented by E = {(eg, 7k, Sk)}k=1.N¢, Where ey is the edge attribute for
the edge between a receiver node 7, and sender node s;. Furthermore, E =
{(€}, 7k, k) Yro=ik=1:Ne, V' = {0} }iz1.nv, and B = U E] = {(e}., Tk, Sk) th=1:Ne-
These update operations are applied over N message-passing layers, establish-
ing an N-hop receptive field depth. As a result, each node’s final embedding
aggregates information from all neighbors up to N steps away, allowing the

GNN to capture both local interactions and broader system-level context.

5.5 Graph-based Neural Dynamics Model

Package and Object

Positions Node /
- > Model Object 41
Material Embeddings Dynamics Xobject
Edge Attributes Message
+ Edge |___, Passing Layers
Material Embeddings Model
. Package xt+1
Robot Trajectory Global Dynamics » package
N " Model "

Object Attributes

Figure 5.4: Graph-based neural dynamics overview: given node, edge, and
global attributes, the model uses successive message-passing layers to
generate latent embeddings and predict the system’s forward dynamics for
the coupled suction-package-object network. The latent embeddings from
the message passing layers are then passed to a multi-head decoder that
predicts the forward dynamics of the internal object and the package,
respectively.

The message passing framework provides a structured mechanism for cap-
turing and propagating spatial relationships within the graph representation.
However, the central objective of this work is to accurately predict the dy-
namics of the suction-package-object system. To effectively learn meaningful
inductive biases through message passing, it is crucial to encode attributes

that comprehensively represent both the system’s state and control inputs.

Analogous to FEM-based methods grounded explicitly in parameters such as
stiffness, damping, and adhesion, which serve as surrogates for real-world ma-
terial properties, it becomes equally important for graph-based neural models

to be similarly grounded in explicit physics-based parameters.

Prior work, such as presented by Zhang et al. [68], introduced methods for
encoding material parameters within a Graph Neural Dynamics (GND) frame-
work. However, their approach lacked explicit modeling of multi-object inter-
actions, particularly those involving both rigid-deformable and deformable-
deformable entities. Additionally, their framework used global, object-level
material embeddings rather than entity-specific conditioning, limiting its rep-
resentational capacity. Furthermore, their predictions were restricted to quasi-
static scenarios, failing to capture the continuous and dynamic interactions ob-
served in real-world settings such as the suction-package-object system studied

here.

Addressing these limitations, we propose a novel methodology and model ar-
chitecture that extends beyond simple deformation predictions and global ma-
terial embeddings. Our approach introduces node-level and edge-level mate-
rial properties, explicitly encoding interactions such as rigid-deformable and
deformable-deformable within the graph structure. By grounding the node
and edge attributes directly on physics-based material parameters, our model
integrates strong physics-informed priors, enhancing predictive accuracy and
generalization. Additionally, we introduce a systematic method for construct-
ing a comprehensive material embedding matrix capable of accommodating
diverse package and object materials typically encountered in practical sce-

narios.

97

To robustly model the coupled dynamics of the package and internal object,
our proposed architecture features two decoder heads with shared parame-
ters (detailed in Section 5.5.4). This design choice significantly improves the
model’s predictive capability, enabling it to capture the intricate interdepen-
dencies and continuous dynamics characteristic of the suction-package-object

system, as demonstrated in our experimental results.

5.5.1 Node Encoder

Node Attribute Vector =
X
Node Positions y Node Embedding
z Model @,
1 for deformable . .
and O for rigid Deformabilityigex =" Material Node Embedding
Embedding
0: suction Model
Node T i
1: package 0ae 1YPlingex ——
2: object Dim =6

Simulating Stiffness, Damping and Adhesion

Figure 5.5: Node-level encoder architecture: for each node, the encoder
network ingests its spatial coordinates (expressed in the end—effector frame
to preserve SE(3) equivariance) along with a learned material embedding
derived from its deformability flag (0 = rigid, 1 = deformable) and entity
type (0 = suction, 1 = package, 2 = object). The MLP applies these inputs
to produce a compact node embedding that seeds the subsequent
message-passing layers.

To effectively encode node attributes and ground them in relevant material
parameters, we propose the node embedding model illustrated in Fig. 5.5. A
critical feature of this model is its input representation: each node’s x, ¥y, z po-
sition is expressed in the robot’s end-effector frame of reference, ensuring that
the model maintains SE(3) equivariance. Additionally, to embed meaningful
physical characteristics, we explicitly encode both a deformability index (rigid

or deformable) and an entity-type index (suction cup, package, or internal

98

object). These indices are processed through a dedicated material embedding

model, resulting in a compact, fixed-size material embedding.

Subsequently, the positional data and the material embeddings are jointly pro-
cessed through an MLP. This MLP generates a comprehensive node embed-
ding vector, effectively capturing both spatial configurations and physics-based
material properties. Consequently, the resulting node embeddings provide a
robust and physically grounded representation, essential for accurate modeling

of complex interactions within the suction-package-object system.

5.5.2 Edge Encoder

Edge Attribute Vector =
Edge Length ~—mo2——
SRCedgeid —mm—mmmmmmmmm

Edge Embedding

DSTedgeid — 4

Model @,
0: suction-suction .
1: package-package Material Edge Embedding
2: object-object Edge Typeinqex —— Embedding
3: suction-package Model

4: package-object
Dim =6

Simulating Stiffness, Damping and Bending (if
edge type is suction-suction or package-package

Simulating friction, Damping, Stiffness if edge
type is suction-package or package-object

Figure 5.6: Edge-level encoder architecture: each edge’s encoder ingests the
source and target node IDs alongside their Euclidean distance that
preserves SE(3) equivariance, and an edge-type identifier that specifies
whether the connection is rigid—deformable, deformable—deformable, or
intra-entity. An MLP then combines these inputs into a rich edge
embedding.

The edge encoder model shares a similar architecture to the node encoder
model but is specifically designed to represent relationships between node
pairs. Since translation equivariance is a fundamental property desirable in
any dynamics model, we encode this equivariance by explicitly utilizing the

Euclidean distance between the two nodes forming an edge.

99

Edges between nodes are established based on specific criteria reflective of the
system’s inherent physical constraints and interactions. Specifically, edges are
created either between nodes belonging to the same entity (i.e., internal ob-
ject, package, or suction cup) or between nodes from different entities based
on their proximity with each other, provided they represent physically mean-
ingful interactions—mnamely, edges between package and suction cup nodes or
between package and internal object nodes. Edges are not established di-
rectly between the suction cup and internal object nodes since these entities
do not directly interact within the system under consideration. Furthermore,
as outlined in Section 5.4, each edge explicitly incorporates the IDs of its
corresponding source and target nodes, ensuring clear relational identification

within the graph.

To further ground the edge attributes on physics-inspired material parameters,
we introduce an embedding matrix specifically for edge types, as illustrated
in Fig. 5.6. This embedding matrix encodes information about the inter-
action type, such as deformable-rigid or deformable-deformable interactions.
The generated material embedding is then concatenated with the existing edge
attributes, subsequently passing through a dedicated edge embedding MLP.
This process ensures the resulting edge embeddings accurately capture both
the spatial relationships and the physical constraints inherent to the interac-

tions within the suction-package-object system.

5.5.3 Global Encoder

The global encoder plays a crucial role in capturing overarching system-level
context essential for precise downstream dynamics prediction. It aggregates
key attributes of the package-object system, including intrinsic properties like

mass distribution and dimensional characteristics. Additionally, the encoder

100

Global Attribute Vector =

Xtoo.!
Ytool
Ztunl

Orientationgyo;

Velocity;por Global Embedding
Model @, —

Acceleration,g;

Pac'kagelength,width

) Global
Objectsjze Embedding

Objectmass

Figure 5.7: Global-level encoder architecture: embeds system-wide
attributes—including package and object mass and dimensions—alongside
external control inputs (end-effector position, orientation, velocity, and
acceleration) into a unified global context vector for downstream dynamics
prediction.

incorporates external control inputs—specifically, the robot’s end-effector state
described by its position, orientation, velocity, and acceleration. By integrat-
ing both intrinsic object properties and dynamic control inputs into a unified
embedding, the global encoder provides the model with comprehensive con-
textual awareness, enabling robust and accurate predictions of the coupled

rigid-deformable interactions within the system.

5.5.4 Dynamics Decoder

Predicting the coupled dynamics of our suction—package—object system re-
quires a decoder that can disentangle rigid-body motion from deformable be-
havior while still modeling their mutual influence. In practice, we observed
two distinct patterns: the internal object largely follows an independent rigid-
body trajectory, especially under high orientation changes and accelerations,
while the package retains its general shape but deforms in response to both

external forces and the object’s motion.

101

Object Node

Latent Embedding

Embeddings

Object

t+1
. —
Dynamics £

object

Node
Embedding

Message
Passing Layers _, Edge

Embedding

— Global —_
Embedding

Package

Xt+1
N —— pvackage
Dynamics

Figure 5.8: Multi-head decoder architecture: two specialized decoder heads
jointly predict the coupled dynamics of the internal object and the
deformable package. The object head consumes only the object’s node
embeddings plus the global context to forecast rigid-body motion, while the
package head processes all package node embeddings alongside the same
global vector to predict continuous deformations. Together, they capture
the interdependent behavior of both subsystems.

To capture these nuances, we employ a multi-head decoder (Fig. 5.8) with

two specialized branches:

1. Object Head:

(a) Inputs: Only the internal object’s node embeddings plus the shared
global context embedding.

(b) Rationale: The object behaves like a rigid body; its future state
depends primarily on its own local interactions and the overall system
context, not on the full deformable mesh. Experimentally, isolating
these embeddings improved object-motion accuracy by an order of

magnitude over a combined decoder.
2. Package Head
(a) Inputs: All package node embeddings concatenated with the same
global context embedding.

(b) Rationale: The package’s deformation arises from both external con-

trol inputs and the internal object’s movement. Including the entire

102

set of package nodes allows the decoder to model how local deforma-

tions propagate across the shell.

Both heads predict delta-state updates (changes in node positions) rather than
absolute positions, further simplifying learning and ensuring stable integra-
tion with downstream control modules. By structurally separating the rigid
and deformable components—and tailoring each head’s receptive field accord-
ingly—we enforce an inductive bias that mirrors the physical interdependence
observed in real experiments. This design not only validates our hypothe-
sis about coupled dynamics but also delivers substantial gains in predictive

fidelity for both rigid-body and deformable motions.

5.5.5 Model-Training

Figure 5.9: Shape-retention under low dynamic loads: when the
end-effector’s orientation and acceleration remain minimal (up to 2 s), the
package maintains its initial shell shape. Once orientation changes intensify
and acceleration increases, combined with internal object motion and
suction-cup compliance, the package visibly deforms.

We train our graph-based neural dynamics model using a composite loss that
is coherent with the objectives from Chapter 4 while introducing a new term

to enforce realistic shape retention. Specifically, our total loss is

L = Alﬁchamfer + >\2£MSE +)\3£shape—retention (54)

103

1. Package Chamfer Loss
L chamfer = Chamfer (Ppred’ Pgt)

measures the bidirectional Chamfer distance between the predicted and ground-
truth package surface point sets (Eq. 4.2). It captures both global and local
geometric discrepancies without requiring explicit point correspondences, mak-

ing it ideal for thin-shell geometry.

2. Object Mean-Squared-Error Loss
2
LySE = ||Cpred — Ct|

penalizes the squared error in the center-of-mass positions of the internal ob-
ject (Eq. 4.3). Given the object’s rigid-body behavior, this simple MSE term

suffices to drive accurate rigid-body predictions.

3. Shape-Retention Loss To enforce the experimentally observed behav-
ior, namely, that under small end-effector rotations (below 20°) and low accel-
erations, the package shape remains essentially unchanged (see Fig. 5.9)—we

introduce a physics-inspired regularizer:

Eshape-retention =)\5 [:6 (1 - O'(Oé AR+ /3 Aa))a (55)

where the core penalty term is

N
1 v . .
L5 =5 p_max(|j} — f 1] —4,0)",
R

104

This term clips small displacements below a threshold ¢ (set according to the
commanded robot trajectory) and penalizes only larger per-node movements.
Here, AR and Aa are the changes in end-effector orientation and acceleration,
respectively; o is a sigmoid function that attenuates the penalty as motion

intensity increases; and A, o, 3 are tunable hyperparameters.

By predicting delta positions instead of absolute coordinates, and constrain-
ing those deltas within physically plausible limits, we enforce smooth, locally
coherent updates that honor both the graph topology and the system’s inher-
ent dynamics. Empirically, the shape-retention regularizer enhances numerical
stability, mitigates spurious deformations under mild motions, and produces
gradients that align with real-world physical behavior. Using this composite
loss (Eq.5.4), we train the model depicted in Fig.5.4, yielding robust, accurate

predictions of the suction—package—object system’s forward dynamics.

5.6 Experiments

We evaluated our graph-based model using an extended version of the experi-
mental protocol from Section 4.6, broadening both the physical configurations
and the dynamic conditions under which the system operates. In addition to
our original package and internal object parameters, we introduced two new
sets of package and object dimensions and mass distributions (see Fig. 5.10),
challenging the model to generalize across a wider range of material properties.
To further stress-test performance, we incorporated higher end-effector veloc-
ities into our draping maneuvers, resulting in a dataset of 244 suction-driven

trajectories that span gentle to aggressive motion regimes.

As before, we collected time-stamped motion-capture data for both the pack-
age mesh and the internal object’s center of mass, processed through the same

registration and filtering pipeline described earlier. Importantly, we also made

105

Figure 5.10: The three different classes of package size, object size, and
object mass.

use of failure-mode data: whenever a trajectory ended abruptly, detected via a
sudden wrench signature on the end-effector, we truncated the sequence at the
failure point and included it in training. By combining varied geometric con-
figurations, increased velocity conditions, and both successful and truncated
failure trajectories, our experiments rigorously assess the model’s ability to
capture nuanced rigid—deformable interactions and maintain predictive accu-

racy across realistic, high-variability scenarios.

5.7 Results

In our experimental evaluation, we focused on two core questions that mirror
those from Chapter 4, but under our expanded test conditions. First, we
asked: “How does the Graph Neural Dynamics (GND) model’s accuracy in
predicting package deformation and internal object motion compare to that of

our FEM-based simulator?” Second, we probed computational performance:

106

“Can the GND model deliver comparable—or better—prediction fidelity while
running significantly faster than the FEM pipeline?” By directly comparing
point-set errors for the package surface, center-of-mass errors for the object,
and end-to-end run times across all 244 test trajectories (including both gentle
and aggressive motions, as well as truncated failure cases), we were able to

quantify each approach’s strengths and trade-offs.

Num Object (MSE Package (CD

Method | Dataset Trajectories Mé]an (Ma))c : Mean = (Max) :
FEM Train 20 0.006 0.003 0.032 0.036
Test 4 0.0008 0.001 0.033 0.038
GND Train 236 0.00001 | 0.0002 | 0.027 0.038
Test 8 0.00001 | 0.0005 | 0.029 0.045

Table 5.1: Comparison of prediction errors for our Graph Neural Dynamics
(GND) model versus the FEM-based simulator from Chapter 4. GND
consistently yields lower mean and max errors for both package
deformation and internal object motion, demonstrating more reliable
rigid—deformable coupling. Occasional spikes in the maximum error
primarily correspond to test frames with missing motion-capture markers.

Table 5.1 summarizes the quantitative comparison between our Graph Neural
Dynamics (GND) model and the FEM-based simulator. The most striking
improvement is seen in the internal object prediction, where GND reduces
the mean center-of-mass error by over 10x. This gain can be directly traced
to our multi-head decoder design, which decouples rigid-body and deformable
predictions into specialized branches—whereas a single-head decoder yielded
performance on par with FEM. We also see a consistent reduction in the mean
package-surface error, further demonstrating GND’s ability to capture sub-
tle deformations more accurately than FEM. Overall, these results highlight
both the architecture’s effectiveness at modeling interdependent dynamics and
the model’s superiority over traditional FEM in our suction—package—object

scenario.

107

Figure 5.11: Qualitative comparison of predicted versus ground-truth
trajectories for both package deformation and internal object motion under
high end-effector orientation. The Graph Neural Dynamics model closely
tracks the true deformations and rigid-body movements, demonstrating
robust performance even in challenging configurations.

Figure 5.11 shows representative predictions of both package deformation and
internal object motion under extreme end-effector orientations. Even as the
robot, tilts the package beyond typical operating angles, the Graph Neural
Dynamics model faithfully reproduces subtle shell deformations and rigid-body
shifts of the internal object. Error analyses in Figure 5.12 confirm that residual
discrepancies are concentrated at the package’s distal edges—well outside the
suction-cup region where failures occur—mirroring the spatial error patterns
observed with our FEM baseline in Chapter 4. Crucially, this localization
of error ensures that trajectory planners can rely on the model’s outputs to
maintain grip integrity and avoid drop events. Finally, the GND model runs
approximately five times faster than the FEM simulator in a forward pass,
enabling real-time trajectory optimization and closing the loop in responsive,

in-situ manipulation tasks.

108

Figure 5.12: Worst-case error scenario for package deformation: the largest
discrepancies between predicted and actual meshes occur at the sheet’s far
edges, while the region near the suction cup, critical for grip stability,
remains accurately modeled. This indicates that even under high-error
conditions, the model’s predictions in the failure-critical zone are reliable
enough for robust trajectory planning.

5.8 Summary

This chapter presented a Graph Neural Dynamics (GND) model designed to
simulate the coupled behavior of a suction—package—internal-object system.
By representing each component—deformable suction cup, thin-shell pack-
age, and rigid internal object—as nodes in a unified graph, and by explicitly
encoding their spatial and physical relationships through edge and global at-
tributes, a continuous, data-driven dynamics model is learned that is capable
of handling complex rigid—deformable interactions. The proposed architecture
conditions each node and edge on material-specific parameters, such as stiff-
ness, damping, and deformability indices, via dedicated embedding networks,
thereby grounding the learned representations in real-world physics. Further-

more, a shape-retention regularizer is introduced that enforces experimentally

109

observed behavior (minimal shell deformation under low rotations and acceler-
ations), yielding smooth, stable predictions that respect the system’s physical

constraints.

Empirically, the GND model matched or exceeded the FEM baseline’s pre-
dictive accuracy while running an order of magnitude faster, making it well-
suited for online trajectory generation. Importantly, errors remained localized
away from the suction-cup region, where grip failures occur, demonstrating
the model’s reliability in safety-critical zones. This performance opens the
door to real-time, physics-informed trajectory optimization for such complex

suction-based manipulation tasks of deformable objects.

110

Chapter 6

Learning Task Sequencing Policies for Deformable

Object Manipulation

6.1 Introduction

Task planning plays a central role in industrial processes involving deformable
object manipulation. These processes often consist of a sequence of inter-
dependent subtasks, where the order of execution significantly influences the
final product quality. In many real-world scenarios, an incorrect or suboptimal
task sequence can introduce defects that are difficult or impossible to rectify
downstream, resulting in costly rework, scrapped parts, or compromised safety
and performance. This sensitivity to task ordering becomes even more criti-
cal when dealing with deformable components, whose dynamic and compliant

behavior can amplify the consequences of early-stage mistakes in the process.

Industrial operations such as composite prepreg layup, surface finishing, and
protective coating applications all involve the sequential processing of a part,
often by human experts. In composite layup, for instance, the direction and
sequence of ply placement affect both the structural integrity and the manu-

facturability of the part. In surface finishing tasks, the order in which regions

111

are processed can influence the uniformity of material removal, while in coat-
ing applications, sequence affects drying time, adhesion, and coverage. The
precision and repeatability required in these tasks make sequence planning not

just beneficial, but essential to success.

Figure 6.1: Example processes that require human-to-robot skill transfer.

In practice, skilled human operators rely on accumulated experience and pro-
cess intuition to make these sequencing decisions, balancing quality objec-
tives with practical concerns like tool accessibility and ergonomic constraints.
However, a growing shortage of skilled labor [77] is creating urgency around
automating these knowledge-intensive tasks. As industries seek to scale pro-
duction while maintaining quality, there is a need for robotic systems that can
perform complex operations traditionally handled by human experts. These
processes require both motion planning and high-level task planning to work
in concert, encompassing the execution of individual actions and the strategic
decomposition and sequencing of tasks to ensure success. Deformable object

manipulation further amplifies these requirements, as the interaction between

112

sequential actions and material response is often nonlinear and difficult to

model explicitly.

To address this, the work presented in this chapter focuses on learning task
sequencing policies from human expert demonstrations, with the goal of trans-
ferring domain knowledge to robots in a structured and scalable manner, rather
than relying on heuristic rules or physics-based simulation, which can be pro-
hibitively complex for modeling defect propagation in deformable materials [1,
78, 79|, the proposed approach models expert intent through Inverse Reinforce-
ment Learning (IRL). Rather than simply mimicking observed sequences, the
IRL approach infers the underlying reward functions that drive expert behav-

ior, allowing for generalization to new tools and unseen process configurations.

As shown in Fig. 6.1, the goal is to enable human-to-robot skill transfer for
processes where task sequencing is critical. Experts typically decompose a
high-level operation into subtasks, each corresponding to a local action on a
specific region of the part. These subtasks are executed in a carefully consid-
ered sequence, informed by both performance goals (e.g., quality, coverage)
and ergonomic or operational constraints (e.g., tool access, ease of motion).
By interviewing domain experts and capturing detailed demonstrations, this
chapter investigates how these preferences can be modeled and learned through

feature-driven IRL.

A key observation from our expert interviews is that multiple task sequences
may be viable for a given tool, but not all are preferred. The preference
may stem from various external factors, such as workspace layout, process
ergonomics, or tool design. To address this, the learned policy distinguishes
between performance-based preferences (which affect outcome quality) and
effort-based preferences (which reflect ease of execution), and learns them

independently. We further introduce a method for assessing feature interaction

113

coverage in demonstration datasets to ensure the generalizability of the learned

policy.

The resulting framework enables robots to plan and execute high-level oper-
ations on deformable objects by sequencing subtasks in a manner consistent

with expert intent. This chapter presents:

e A structured representation of process decomposition and region-based

task modeling for deformable object operations

e A data collection and feature analysis pipeline to support preference mod-

eling from human demonstrations,

e An IRL-based policy learning framework for sequencing tasks under vary-
ing constraints, and Experimental validation on a real-world industrial

application involving high-mix, low-volume parts.

6.2 Related Work

IRL Overview: The field of IRL has been mainly categorized under the um-
brella of imitation learning, with the objective of learning an expert’s policy.
Earlier work in IRL focused on imitating an expert’s policy on already demon-
strated data or simple tasks [80]. There are four main IRL approaches: Max-
margin IRL, Max-entropy IRL, Bayesian IRL, and Regression/Classification
IRL [81]. Max-entropy-based methods [82] propose a solution to select weights
in the presence of incomplete information. In contrast, Bayesian-IRL meth-
ods [83] compute a probability distribution over reward functions based on
informative priors. Most of the work in IRL assumes a linear reward func-
tion, except for [84], which focuses on sub-optimal stochastic demonstrations.
In this work, our problem requires us to strictly comply with the expert in

the absence of any noise. Besides finding a reward function for the expert,

114

we also need to penalize sequences that result in poor process performance.
Therefore, max-entropy and Bayesian IRL-based methods are not suitable.
Max-margin methods proposed by [85, 86| introduce the concept of scaling
sequences based on their proximity to the expert’s demonstration. There-
fore, max-margin-based methods provide the appropriate learning scheme for
our problem. However, previous work on max-margin-based methods did not
address scenarios with varying levels of preferences, feature interactions, and
limited demonstrations. Recent work proposed in [87-89] introduces the active
learning element to learn reward functions from preferences. However, these

methods do not take into account interacting features.

IRL in Manufacturing: IRL for sequencing has been studied for assembly
tasks in [90-92], but the focus is on assisting the expert rather than trans-
ferring policy to the robot. Several works also focus on learning rewards for
insertion tasks [93, 94]. In [95], the authors mention using IRL for sequencing
for machining tasks, but do not account for transferring policies to a robot.
Prior work in learning from demonstration has explored the problem of solv-
ing surface finishing operations [96-99|, but they do not address the region

sequencing problem.

2. Learning Stage

1. Demonstration Stage 0
Human ! Shortest Sequence Multiple Sequences
-“ Expert ! Mot enough is not User are Equivalent
r _ : T Coverage? Query for Sequence| Demonstrated \Query for Sequence 10 User Demonstrated

Identify 1 Demenstrations Preference Preference

Features 1
! Update Update Update
1 Dataset Sample Sample

Declare Suspected . Featu Per based Effort-based

—_— " {
Feature Interactions L » Coverage Analysis Learning > Learning

Demonstrate 1 D Learn Weights: Learn Weights:
Sequences £} for | w* w.

each tool ¢ Demonstration
J 1 == ;

1
1
L .
Process ! : 3. Execution Stage Generate Task New Tool
Demonstration |

Number of |
Tools: d

Sequences

'
i i .
1 Expert's Motion 1
Input Tools T Data : -
L e 1 + 1 w
Every tool is divide into 1 ! Generate Robot £ Execution on

- regi 1 Imitation Learni — A .
N; regions i]) Trajectories Robot
'

Figure 6.2: Overview of the proposed framework for learning task
sequencing policy.

115

6.3 Problem Formulation

We formulate the problem described in Section 6.1 as a task sequencing prob-

lem, where the robot has to perform a set of subtasks to complete the process.

Assumptions: Our assumptions for the task sequencing problem are as

follows:

e Demonstrations are optimal and have no noise as they are performed by

experts.

e Features and Feature Interaction information can be captured from the

expert’s process description.

e Only pairwise feature interactions are present.

State Preliminaries: Section 6.1 describes processes that feature a tool, as
shown in Fig. 6.2. The tool is divided into N; regions, Vi € 1,..,d, where d is
the number of demonstration tools. Regions are indexed alphabetically based
on their appearance row-wise from left to right. A task for the agent is defined
as processing a region on the tool, so the agent’s objective is to compute a
desirable sequence for performing these IV; tasks.. We denote the human expert
by H, whose performance and effort-based preference we are trying to model.
The autonomous agent that learns from H will be represented by .A. The state
of A gets denoted as s € S;,S; — RYi, Vi € {1,..,d}, and we represent s as a
set of tasks that A completes. The action that A takes at a state s is denoted
as a € A, where A is a set of available actions at state s. An action a signifies
the task that A chooses to perform. In our case, A gets defined by the set of
tasks that are yet to be executed by the agent. The state transitions s — s’

due to action a are assumed to be completely deterministic.

Transition Cost: In this chapter, we will refer to reward as a negation of cost.

Hence, our formulation will refer to the IRL problem of maximizing reward as

116

minimizing cost. We define the policy of the agent as to follow a minimum
cost sequence for performing the V; tasks. In a standard inverse reinforcement
learning problem, the cost for transitioning to a state gets defined as a linear
function of weights w and an array of feature values ¢ dependent only on the
agent’s current state [100]. The nature of the sequencing problem we study in
this work is such that the feature array is a function of the state s and action
a. Additionally, as per H, certain feature pairs in the feature array might

interact with each other.

Therefore, we define the cost of transition for A by Eq. 6.1, where ¢(s,a) =
{b1, b2, ..., o} is an array of feature values that are dependent on state transi-
tions. The set of interacting features for a subset of feature values from ¢(s, a)
is denoted by Gini(s,a) = {(6s - $)1, s (1 - S} Vi ok L < my i £ Gk 1.
The total number of feature interactions suspected by the expert H is m. In
our formulation, non-linearity is introduced by ¢,:(s,a). We will denote our
unified weight array as w = {w wj,}, that is a concatenated array of the

linear feature weights w and the interacting feature weights w;p:.

c(s,a) = quS(s, a) + wg;ltgbmt(s, a) (6.1)

w,p eR"Vop:5€S,ae A

Wint, ¢int(87 CL) — R™

Learning Performance-based Preferences: The human expert H demon-
strates a desired sequence £* on a sample tool. The agent A has access to d
demonstrations, each on different tools. We define the demonstration dataset

as D = {01,062, ...,04}, where §; = {&, F;, N;}, F; is the feature information

117

for i*" demonstration tool from which ¢ is computed. Furthermore, the ex-
pert H also gives information about the interacting feature set ¢, for the
demonstration dataset D. Now, as described earlier, the agent has to solve

the following problem:
C(&F) < C(€)), Ve e D,VEl € P —» RP (6.2)

where,

C(&) = w' (&)

N; N;
(&) D (D(skran) T bime(sk, an)}
k=1 k=1

In Eq. 6.2, C(&;) is the total cost incurred by the agent for following a sequence
&. We define P; as the set of all possible sequences for the " tool. ®(&;) is
an array of the sum of individual feature values and interactions for the state
transitions in sequence &;. Thus, we find a weight array w* by solving Eq. 6.2
such that the expert demonstrated sequence & is the lowest cost sequence for

all the corresponding tools in D.

Learning Effort-based Preferences: The feature values used for the prob-
lems discussed in Section 6.1 are geometric features of the tool. Thus, for a
given demonstration in D, there might be several sequences with equivalent
feature arrays due to the symmetry of the tool. These equivalent sequences
(&F) will have identical costs to the user-demonstrated sequence (£f). We

formulate this feature equivalence property by Eq. 6.3.

O(&7) = P(&7); & € i, Vi e {1, d} (6.3)

118

where, Q; is the set of sequences for it demo that exhibit the equivalence
property in Eq. 6.3. However, as discussed in Section 6.1, the expert H might
prefer specific sequences in €2; due to their effort-based preferences. H might
choose sequences that start at a specific task and end at a specific task to
improve their ease of operation. In this case, H is queried to compare their
preference for the equivalent sequences in relation to corresponding &£’s in
D. The objective is to learn a preference penalty function 7 such that the
preferred sequences &7 "¢/ have the lowest penalty. Hence, we can formulate

the effort-based preference learning problem as follows:

(€Y < n(ed), Vi e {1,...,d}, V& € oy, Vel e g (6.4)

where, 7(¢) = w! 2(€); and #(€) are effort-based preference features for an

arbitrary sequence {. We denote, ¢ C); as the set of preferred sequences,
and ¢; C §; as the set of unpreferred sequences s.t. ¢ N; = 0. It is
important to note that adding 2(£) in learning the weights w in Eq. 6.2 would
not be appropriate as z(§) will change based on external factors mentioned in

Section 6.1.

In situations when the expert has no preference between the demonstrated
sequence and any other equivalent sequence £¢, we do not need to learn the
preference penalty n(-). We can set the value of n(§) = 0 for any arbitrary

sequence €.

Feature Interaction Coverage in Demonstrations: To learn the expert’s
preferences, the demonstrations need to be informative with respect to feature
interactions. Assuming access to enough demonstrations to capture all levels
of feature values and interactions for the transitions in £* is impractical. We
propose feature interaction coverage as a metric that assesses whether the

dataset D enables learning of these interactions. This metric can then be

119

used to query the expert for more informative demonstrations if needed. We

represent this metric as p(-) and define it as follows:

p(D) x £({¢; Pint}) (6.5)

where, the function x(-) computes the overall extent of coverage of ¢ and ¢;s.
Thus, using p(+), we should be able to query H to ask for specific demonstra-

tions that improve feature coverage.

6.4 Method

In the previous section, the formulation that we proposed engenders three
main problems: (1) Learning H’s performance-based preference, (2) Learn-
ing effort-based preferences, and (3) Feature interaction coverage. The entire
framework is depicted in Fig. 6.2. We build upon the structured max-margin
approach outlined in [85] to solve the proposed problem. Section. 6.2 gives the
reasoning for selecting margin-based IRL methods for our approach. Before we
commence learning performance and effort-based preferences, we evaluate the
extent of feature coverage in the demonstration data. Once we have enough
coverage of feature values, we proceed with learning. Subsequently, we define
a graph-based state space representation for each demo tool in D. Then, we
introduce our iterative max-margin approach with an active learning element
for diversely sampling the training data and a cost function designed to solve

the problem in Eq. 6.2.

6.4.1 Estimating Feature Interaction Coverage

To solve the feature interaction coverage problem, we employ a 2-factor fac-

torial design of experiments technique to capture feature values and feature

120

interactions on three levels: high, medium, and low. For each interaction level,
we count the instances such that the remaining feature values are uniformly
distributed. We use the standard Chi-squared test for determining whether
the features are uniformly distributed with an « value of 0.05 [101]. Once we
ensure uniform distribution, we compute a confidence metric of D for capturing

all expected interactions according to Eq. 6.6.

no of interactions captured

p(D) (6.6)

~ total number of interactions possible

Based on the weakly captured interactions, we query the expert H to provide
demos with a specific feature interaction value. This helps improve the p(-)

value of the dataset, as shown in Section 6.6.

6.4.2 Graph-based State Sequence Representation

After obtaining D with sufficient feature value coverage, we represent the
state space (S;) for every demonstration in D in the form of a separate graph
Gi,Vi € {1,...,d}. Each node/vertex vin the graph is a state s, and each edge e
is the cost to transition between states s — s’. Therefore, each demonstration

0; € D has a corresponding G;.

In G;, we use a one-hot vector of size IN; to encode each node, where the
completed tasks are represented as 1’s and incomplete tasks are represented as
0’s. We define sgq¢+ as a state node for which none of the tasks are completed
by A and s, is the state node when A has completed all the tasks for a given
tool. Naturally, sgiqr+ becomes a vector of 0’s of size N;, and s.,q becomes
a vector of 1’s of size N;. Thus, an arbitrary sequence &; for G; becomes the
path traversed from Sgqrt 10 Seng- As discussed, our objective becomes to
learn w*, such that & will be the shortest cost path from sgqr¢ t0 Sepnq for all

the corresponding G;’s. For a demonstration with N tasks, there are a total of

121

N! possible sequences, which necessitates a specialized approach for learning

w*.

6.4.3 Loss function for performance-based preferences

The Quadratic formulation, as described in [85], is the most commonly used
method to formulate the max-margin problem. Such a formulation with con-
straints becomes inefficient to optimize when we have a large number of se-
quences with cost values significantly higher than the lowest cost sequence
[102]. After computing the cost of a random sample of sequences, we found
that 55% of sequences still had a cost value 70 times higher than the lowest
cost sequence. Therefore, we resort to an online cost function where the con-
straints are absorbed into the objective function itself. Our unconstrained loss

function is as follows:

L(w) =

SHN

d Pi

o .
S S e e +
= P4

Bi(u” @ — min(u” @) + 5 ('@ 0@]+ Al (67

In Eq. 6.7, oy, B4, i, are hyperparameters and A is regularization term. ® rep-
resents the feature array for the user demonstrated sequence & in D. To train
the model, we generate an initial sample of sequences x; € X — RPi of size p;
for i*" demo, as per Section 6.4.4. For the initial sample z;, minq)g (wT<I>g)Vj €
{1,..,p;} returns the cost value for the lowest cost sequence in x;. The fea-
ture array for the overall minimum cost sequence & of the corresponding G; is
denoted by ®;. We minimize this loss using a generalized version of gradient
descent based on sub-gradients [103]. Section 6.6 gives an intuition of every

term in Eq. 6.7.

122

6.4.4 Learning performance-based preference

The state space of the proposed problem experiences rapid complexity growth
due to the problem’s combinatorial nature. For a given G;, there are overall
N;! possible sequences. Hence, solving this problem with one-shot optimiza-
tion can be inefficient. To address this challenge, we adopt a solution that
begins with a nominal sample size p; drawn from the entire population of se-
quences for the i** demonstration. However, random sampling may result in a
poor representative sample, particularly when many sequences have equivalent
feature values (see Section 6.3). To generate a diverse initial sample, we use a
similarity metric based on cosine similarity between feature values of a given
sample & and expert-demonstrated sequence £*. We then iteratively update
this sample set with sequences with costs below a certain threshold compared

to £ as described in Algorithm 3.

Algorithm 3 takes the demonstration dataset D as input. Using F; we com-
pute the feature array ¢(s,a) and initialize the corresponding graphs G; for
each demonstrations in D with w. We generate an initial sample data X by
performing cosine similarity-based diversity sampling. This sample helps max-
margin appropriately scale the cost of the truly bad sequences compared to
the good ones. Since our initial sample size is a small representation of the
entire sequence population, we perform learning in an iterative manner. After
every iteration, we compute the first I; shortest cost sequences and query H
to compare if they are similar to . We then update the sample space X
with non-similar sequences for all §; € D. Using such an iterative update and

starting with a diverse sample helped us converge faster [104].

123

Algorithm 3: Performance-based Preference Learner

1

© W N O Gk W N

-
[=)

11
12
13
14
15

16
17

18

Input: D

Initialize:

w: Random Initialization

¢(s,a): Compute ¢(s,a) Vo; € D

G;: Initialize G; = (v, e) with w; V§; € D
o, Bi,vi: Hyperparameters

pi: Initial sample size for i** demo in D
IC;: Dataset update parameter for it demo in D
(: Learning Rate

T: Total Number of Iterations

t = 1: Current Iteration Count
GenerateSample:

X iz, 0, . xg; i — RPOYG € {1, .., d}
while (not converged) do

while ¢t < T do
Compute(C(&F),Vi € {1, ..,d})
Compute(C(&]),Vi € {1,..,d},Vj € {1,..,pi})
Compute (C(&7),Vi € {1,..,d})
Compute Loss: L(w) as per Eq. 6.7
Compute Subgradient g of £(w)
w<— w— (g
reinitialize G;, Vi € {1,..,d} with updated w
t—1t+1

if (C(&) ==C(&),Vie{l,..,d}) then

‘ converged = True

else
Compute K; shortest cost sequences in G;, Vi € {1,..,d}
Query H to check for similarity between the IC; sequences and

demonstrated sequence
update X’ with non-similar shortest cost sequences
t=1
return w

124

Algorithm 4: Effort-based Preference Learner

0w N o oA W N

©

10
11
12

Input: D

z(&;): Positional features for a sequence Vd; € D
Q : {Ql, QQ, ceey Qd}

Initialize:

w,: Random Initialization

* = [|: Set of preferred sequences,

¢ = []: Set of unpreferred sequences,

for ©; in (Q) do

y*.append(z(¢]))
for &; in (§;) do
preference = evaluateHpreference (&, &;)
if preference then
| ¢*.append(z(&;))
else

I | ¢.append(z(&;))

ig(len(w) == () then

‘ w, =0

else

L Learn w, using max-margin approach with £(w,) as the loss function (Refer
Eq. 6.8)

6.4.5 Learning Effort-based Preference

Algorithm. 4 depicts how we learn a penalty function based on Eq. 6.4. This
penalty function is trained based on positional feature values of the starting
and ending regions in a sequence £. A simple quadratic loss function gave us

the desired results as follows:

£(2) = 22| (69

s.t.Vi,j max ;) + € < min ;
j &Ew*n(&) gjewn(&)

where, 1* is a set of sequences that are preferred by H and v is a set of

sequences that are not preferred by H. € is a slack variable. When the expert

125

equally prefers all equivalent sequences, i.e., ¢ = (), we set n = 0 for all

sequences.

6.5 Data Collection

The proposed method is evaluated on the composite prepreg layup process.
Chapter 7 [3| showcases how this process is performed in a sequential manner,
where the task of the agent is to conform the sheet region-by-region on top
of the tool. Our dataset comprises two categories: 1. Real Dataset (Dyeqr)
and 2. Synthetic Dataset (Dsyn). Dsyn is a simplified version of Dyeq. We
use Dg,yy, for model evaluation and ablation studies, whereas D,¢q; is used for
training our model and performing physical robot experiments. D,..,; consists
of industrial tools used in the layup process (Refer Fig. 6.3). Overall we
have 10 tools each in D,.q and Dsy,. We use a clustering algorithm based on
feature attributes such as curvature, relative height, and aspect ratio of the
tool [105] to transform the given tool’s CAD into local regions. We then record
the expert’s desired sequence on all the tools in D,..q;. In this case, we use a
total of 10 feature values that are selected after consulting with the process

L. The process expert also

expert for learning performance-based preferences
provides information on pairwise feature interactions. In our case, the expert
suspected interaction between a region’s relative height and curvature, as well

as region orientation and curvature.

We validate the effectiveness of our model in generating high-quality parts
by conducting physical robot experiments on two tools selected from D,eqy,
as illustrated in Fig. 6.3. While executing the layup task on these tools, we
record the expert’s motion and force data. We design a custom handheld tool

with an embedded force sensor to capture the force data. The motion of this

!More details on the features can be found at: https://sites.google.com/usc.edu/irlfortasksequencing

126

https://sites.google.com/usc.edu/irlfortasksequencing

tool is tracked via an OptiTrack motion capture system with an accuracy of

+0.1mm.

Figure 6.3: Two tools are selected from D,..q;for collecting human motion
data, and then the robot performs the same process. The tool on the left is
used for training, and the tool on the right is used for testing.

6.6 Results

We perform ablation studies for our loss function on Dy, by setting a known
weight value wsgy,. The weight array wsy, represents a hypothetical human
preference. We then evaluate the shortest cost sequence and try to recover
Weyn- We use a 6:4 training to testing split for Dy, and Dyeqr. For Dyeqr, we

train our model and perform a robot demonstration on a testing tool.

Performance-based Preference Learning Results (D,,,): Fig. 6.4 il-
lustrates how every term in our loss function in Eq. 6.7 has an impact on
performance. The average term with « hyperparameter helps penalize bad

sequences by ensuring a good spread of cost values for sample sequences. The

127

min term for the training sample with 8 hyperparameter helps effectively pe-

nalize sequences close to the demonstrated sequence when we update the initial

sample. Lastly, the shortest-path sequence term with v hyperparameter helps

us achieve convergence in fewer updates.

Effect of term with a hyperparameter

Without Average Cost With Average Cost
L]

* *
1500 * & *. §ioe ©
°
13 1000 Bo o e
=] ous o Y
Q
500 .
— S
0 Min Cost Line B Ty yepp——
Min Cost Line
0 20 20

0
Training Sample Training Sample

Effect of term with # hyperparameter
Update Number 1 Update Number 2

* £ *x &

200 ¢ Min Cost Samples ® Min Cost Samples
.
-t
3 150 ° L]]
S)y e o °,
L] L]
e® . 'd .\
100 w008 - —-J‘o!--l ———————————
Min Cost Line ~ « Min Cost Line
0 5 10 0 5 10

Training Sample Training Sample

Effect of term with y hyperparameter

n

g 4 M with min term
- mm without min term
=3

2

>

"5 2

o

2l

: B
2077 2 3 4

Number of Updates

Figure 6.4: In the absence of the o term, other sequences were not
appropriately scaled despite £* being the lowest cost. The § term scaled
the minimum cost data points properly after iterative updates, as seen
from the shift in cost of red dots in Update Number 1 and 2. The ~ term
required more update steps for convergence. The y-axis violations represent
the number of training demonstrations where the desired sequence was not

the lowest cost.

Effort-based Preference Learning Results (Dsy,): Fig. 6.5 shows that

initially, the cost for all equivalent sequences for an example tool is the same

for a learned weight array w*. Eventually, the learned n levied an appropriate

penalty for the less preferred sequences by the expert. In our implementation,

we use the normalized coordinates of the tool’s individual region centroids as

the positional features for learning. In the example in Fig. 6.5, the expert had

a starting preference at a region to the right of the tool.

128

Example Tool in Testing Dataset Equivalent Sequences

h &joi-h-g->f-oe—-c—->d->b-a
fi;g—)i—)j—)h -f—-e->c—->d->b-a

. . fg:h—)j—)i—)g—)f—)e—)c—)d—)b—)a
!] f;;i—>h—>j—>g—>f—>e—>c—>d—>b—>a

b|c g
a f
d|e
25 Before Effort-based Penalty
2.0
15
x
o

2.5 After Effort-based Penalty

_ &
b £
= £s =
e e e * + N
1o 37 &3 &3 3 S 1.0 3
(w]
0.5 0.5
0.0 . 0.0 .
g h |] g h I j

Starting Region Starting Region

Figure 6.5: Note that C(§) is normalized. Also we scale the costs such that

n for £ is 0.

Feature Interaction Coverage Results (Dsy,): In order to evaluate

feature interaction coverage, we perform a study where we select different sets

of tools from Dy, and assess their influence on p.

Set of Tools

{17273’47576777879’10} {1’6?778797]‘0} {2’374’6?7} {17273’4’5}

Value of p

1.0 0.9 0.5 0.4

Table 6.1: Set of Tools means a subset of the 10 tools from Dgy,,. The first
column is for all the Dy, tools. We can see as we vary the dataset, p value
changes, indicating varying feature interaction coverage. For more info on

tools: website

Robot trials (D,¢q): We train the model on 6 tools from D, and test

them on 4 tools. We used one of the tools on which we recorded the expert’s

motion and force data for training and the other one for testing. We trained

on a simpler tool and evaluated our model on a complex tool. We executed

the robot with motions learned from the human motion data for the sequence

generated for the testing tool. To test the effect on part quality, we scanned the

129

https://sites.google.com/usc.edu/irlfortasksequencing

human and robot laid-up parts and computed the error between the two. The
error was 0.7 mm (£ 0.026mm), which is acceptable for the mentioned process
[106]. The demonstration data had a p value of 1.0, depicting that feature
interactions are captured at all levels. Our model evaluated well on both the
training and testing datasets, with the demonstrated sequence consistently

yielding the lowest cost for all tools in D,.eq.

6.7 Summary

This chapter addressed the challenge of learning task sequencing policies for
deformable object manipulation in industrial contexts. Task planning is criti-
cal in processes such as composite layup, surface finishing, and coating, where
the sequence of operations directly influences the quality, reliability, and ef-
ficiency of the final outcome. The sequencing problem becomes particularly
important when working with deformable objects, where incorrect task order-

ing can result in irreversible defects or increased operational complexity.

An Inverse Reinforcement Learning (IRL) framework was presented for cap-
turing expert sequencing behavior through demonstrations and for learning
interpretable task policies. This formulation supports generalization across
different part geometries by modeling expert preferences based on extracted
features and their interactions. The introduction of a feature interaction cov-
erage metric provided a principled way to evaluate the representativeness and
utility of demonstration datasets. Additionally, the decomposition of pref-
erences into performance-based and effort-based components enabled more

flexible and explainable policy learning.

Importantly, the proposed framework is physics-informed, as it incorporates

domain-specific process knowledge and expert-derived priors about material

130

behavior, task constraints, and operational best practices. These implicit phys-
ical cues, captured through demonstrations and feature engineering, guide
the learning process toward policies that are not only data-driven but also

grounded in the underlying physics of the task.

Experimental results on real and synthetic tools demonstrated that the learned
policies effectively reproduce expert task sequences and generalize to unseen
configurations. The IRL framework, when trained with well-structured demon-
strations and guided by task-relevant features, consistently achieved the lowest
sequence cost, indicating alignment with expert strategies. These results un-
derscore the utility of structured demonstrations and physics-informed policy

learning in transferring complex skills from humans to robots.

This chapter contributes to the overarching theme of this dissertation by show-
ing how task-level reasoning and sequencing can be learned from data, comple-
menting the low-level manipulation models and simulation tools presented in
earlier chapters. Together, these capabilities form a foundation for intelligent,
human-aligned robotic systems capable of performing high-skill deformable

object tasks in unstructured industrial environments.

The next chapter builds on this framework by exploring how learned simulation
models and task plans can be integrated into real-time manipulation planning,
enabling robots to execute adaptive actions under physical and task-based

constraints.

131

Chapter 7

Simulation-based Grasp Planning for Deformable

Objects

7.1 Introduction

Figure 7.1: A composite sheet layup cell consisting of three robots and one
human.

132

Planning manipulation strategies for deformable objects presents a set of chal-
lenges that differ fundamentally from those encountered in rigid-body manip-
ulation. These challenges become especially pronounced when manipulating
large, sheet-like objects, which introduce additional complications related to

gravitational drooping, material sagging, and non-uniform stress distribution.

As the scale of a deformable object increases, so does its susceptibility to com-
plex deformations. Larger sheets tend to exhibit more pronounced bending and
stretching behaviors, which are often difficult to predict and even more chal-
lenging to control. The situation becomes more complex when such sheets are
functionally engineered materials, such as those impregnated with adhesives,
exhibiting anisotropic stiffness, or composed of multiple layers. These physical
characteristics significantly influence how the sheet responds to grasping and
lifting actions, and any mismatch between planned and actual behavior can

result in irreversible failures.

Beyond the physical modeling challenges, task-level constraints also play a
critical role in deformable object planning. In many real-world applications, it
is not sufficient to simply grasp and lift an object. Robots must do so while sat-
isfying constraints related to geometry, contact conditions, tool accessibility,
and process-specific quality requirements. For example, avoiding premature
contact with a target surface, maintaining tension limits to prevent damage,
or ensuring that follow-on actions (such as folding, draping, or fastening) can
proceed without interference. These task-aware constraints must be accounted
for explicitly in the planning phase to ensure feasible and safe execution. To
address these challenges, this chapter explores the use of simulation-based
planning for deformable sheet manipulation. Simulation provides a flexible
and scalable solution to evaluate candidate manipulation strategies entirely
offline, thereby reducing dependence on costly and time-consuming physical

trials. By leveraging a physics-based simulator that accurately captures sheet

133

deformation under various grasping and boundary conditions, robots can ex-
plore and validate grasp plans before deployment. Once a suitable plan is
identified, it can be executed online using feedback-based control to adjust for

real-world discrepancies.

The motivating use case for this work is automated layup of prepreg com-
posite sheets—a critical step in manufacturing high-performance structural
components. While automation in composite manufacturing has progressed
significantly for tape and fiber placement on simple geometries, prepreg sheet
layup remains largely manual due to its complexity. In this context, large
adhesive-backed sheets must be positioned with high precision on 3D molds,
often requiring multiple stages of grasping and draping. Small deviations in
sheet behavior during the grasping phase can lead to defects such as bridging,

wrinkles, or improper adhesion, making accurate grasp planning essential.

This chapter presents a simulation-driven grasp planning framework that uti-
lizes a thin-shell finite element simulator to model sheet deformation and op-
timize grasp configurations. A state-space search algorithm is used to identify
grasp points that satisfy both physical constraints (e.g., tension, drooping,
collisions) and task requirements (e.g., region coverage, reachability, minimal
repositioning). The system is deployed in a hybrid human-robot collaborative
cell involving three robots and one human operator. To bridge the simulation-
reality gap, a feedback-based intervention controller is introduced to adjust

plans online based on real-time sheet tracking.

Through this approach, the chapter demonstrates how simulation-based plan-
ning— when grounded in physical modeling and informed by task constraints
— can enable safe, efficient, and scalable manipulation of large deformable

sheets in industrial applications.

134

7.2 Related Work

Work done in [22] was used to predict how a sheet will deform on a solid
mold using numerical models. Numerical models were also built to predict
prepreg behavior when it is grasped from specific points [107]. Kinematic
algorithms to map discrete points on the sheet to a non-developable surface
have also been studied [108]. Such models are then used to estimate the
draping sequence, which we use as an expert input in our work. Authors in
[109] reported different techniques that experts use during layup to enable
using motion primitives with robotic manipulators. Researchers have also
proposed cell concepts which can be used to automate the layup process in
[110, 111]. However, these methods do not address the automated trajectory

generation for multiple robots.

Work reported in [112] constructed a cell using an industrial robot and man-
ually programmed it to use custom end-effectors for applying pressure and
conforming the sheet. Specialized grippers for handling carbon fiber are also
required since we need to prevent the sheet from adhering to gripper surfaces
and sheet contamination [113, 114]. The proposed robotic cell extends the

functionalities of such custom hardware for automation.

Picking and placing carbon [115] fiber sheets is another area of active research.
A detailed review of pick and place operations is provided in [116]. Similarly,
state-of-the-art grasping and automation technologies have been reviewed in
[117]. Multi-arm manipulation of prepreg is what makes the process challeng-
ing since it requires coordination of different arms [118-127]. Robot motion
plans need to be automatically generated for making the process economical.
Survey papers on the manipulation of deformable objects include [128, 129].
Planning and control approaches have been developed for 1-D problems [130-

137], cloth folding [138-150|, and ply manipulation [151-154]. Most of these

135

applications define a final shape of the material, and planning and control algo-
rithms are used to reach this desired shape. Layup, on the other hand, requires
several intermediate steps to reach a desired shape on the mold. Each such step
consists of applying pressure and deforming the viscoelastic material. Hence,
grasp planning algorithms need to account for the underlying physics and
uncertainty. Thin-shell simulations are routinely done in multiple engineer-
ing communities, and are relatively well-understood [155]. Although methods
exist to tune thin-shell material properties to observations [156], thin-shell
simulation alone is not sufficient for composite-sheet robotic grasp planning.
This is because composite sheets must be laid in stages, and content-specific
knowledge must be added to avoid damaging the sheets and ensure that real

sheets are actually laid as predicted by the simulation.

Learning-from-demonstration techniques have been used to solve some chal-
lenging manipulation problems [157-159]. However, the uncertainty in the
process due to changing properties of the viscoelastic material over time makes
the manipulation a challenging task. Additionally, the complex interaction be-
tween draping and manipulation is also difficult to learn. Our previous work
done in [79, 106, 160, 161] proposed a grasp planner that generates tool paths
for simpler geometries and executes them under impedance control. In this
work, we extend our previous planning algorithms by a high-fidelity physics
simulator, account for the uncertainty during graph generation, and also pro-
cess constraints that can accommodate newer variants of molds and larger

sheets.

7.3 Problem Formulation

In this section, we formulate a multi-robot grasp planning problem for the

composite layup process. Prepreg composite layup is executed in multiple

136

stages characterized by the number of draping zones m. A subject matter
expert determines these zones for the prepreg and mold, as depicted in Fig.
7.2. We represent these zones on the prepreg as RP; and the corresponding
ones on the mold as RM;, where i € [1,2,...,n] is an intermediary draping
stage. These zones are defined such that there exists a 1:1 correspondence
between RP; and RM; {RP; = RM;}. The layup process is thus defined as
a sequential procedure of conforming the draping zones of the prepreg RP; to

the corresponding ones on the mold RM;.

2 RPs
RM3
RPs
RP, RP; | RP: | RPs | RP;
RPg
RPy
a. Mold Draping Regions b. Prepreg Draping Regions

Figure 7.2: (a) Definition of draping zones on the Mold, (b) Definition of
corresponding draping zones on the Prepreg Sheet.

Let us consider an intermediate stage ¢ of the draping process. We represent
the prepreg composite as a deformable surface mesh where each element of
the mesh is modeled with the prepreg’s material parameters. At the stage i,
the draping zones 1,...,7 — 1 have already been conform to the corresponding
regions on the mold; hence, we only need to compute the grasping locations

for the remaining portion of the prepreg.

To understand how we define grasping locations, let us consider an example
of the composite layup for a mold, Part A, shown in Fig. 7.8. During the
layup process, a prepreg is always grasped along its periphery. Such potential

grasping points along the edge of the prepreg at a draping stage 7 are depicted

137

(a) (b)

Figure 7.3: (a) Potential Grasping Location with corresponding {®, U} &
(b) State Space Representation of the sheet

in Fig. 7.3a. We denote these candidate points by a variable ®, where ®
represents a potential grasping point along the prepreg’s boundary at stage
i. Additionally, every ® can assume a 3D location {x,y,z,7,p,y} * within
the feasible workspace, as shown in Fig. 7.3a. We denote this 3D location
of ® by another variable W. Here, ¥ represents the Cartesian position and
orientation of a particular grasping point ®. Hence, a grasping location for
the prepreg gets characterized as a tuple of variables {®, U}. We represent
this tuple by a; = {®, ¥} that denotes a grasping location at a stage i in the

draping process.

In this study, we have focused on prepregs that can be supported by only two
grasping locations. We denote these two grasping locations by a% and 0412 as
depicted in Fig. 7.3b. At a particular value of ail and a?, the undraped portion
of the prepreg will assume a certain configuration. We define this portion of
the prepreg by Poéil7al2. Consequently, the free region of the mold at this stage,

on which draping is yet to be performed, is represented as M, 2. Fig. 7.3b

i

gives an overview of these parameters for i = 4.

*note: The orientation {r, p,y} is defined for the Tool Center Point of the manipulator that will grasp
the prepreg

138

Therefore, the overall system’s state space representation Sal,a2 can be for-

mulated as follows.

S

2
oy,

= {Ozil,OéZ-Q,P 1,1 Ma17a2},Vi S {1,2,...,n} (71)

a;,a;0

A particular state S,1 ,2 is considered feasible if S,1 2 satisfies a set of process

constraints. We have identified eight such process constraints:

1. Elastic Energy: The elastic energy [29] represents the degree of deforma-
tion experienced by P, ,2 under external forces and constraints. Elastic
energy exceeding a threshold value indicates that the prepreg is experi-

encing excessive deformation.

2. Sheet to Mold Collision: Collision between undraped sections of the
prepreg and the mold can introduce innumerable defects. In the worst
case, it might lead to the scrapping of the currently manufactured part.

This constraint determines whether P1 .2 and M1 ,2 are in collision.
i i

3. Sheet Self Collisions: At a particular state Sa}va?’ there is a possibility
that the prepreg P .2 is self-colliding. Self-collisions are undesirable in
any configuration as they cause wrinkles and other major defects.

4. Distance between the current Draping Region and the Mold: To achieve
successful draping for a zone { RP; = RM,}, the layup technician needs
to apply forces without affecting fiber alignment or overstretching the
sheet. To ensure this, the distance between RP; and RM,; should be

below a minimum threshold.

5. Distance between the Undraped Region and the Mold: The undraped sec-
tion of the prepreg should maintain a minimum threshold distance from
the corresponding { RM; 41, ..., RM,}. This constraint ensures that there
is no undesirable contact between the prepreg and the mold while the

technician is draping a particular RF;.

139

6. Droop Factor: Drooping is an undesirable phenomenon in the layup pro-
cess, potentially leading to prepreg misalignment and self-collisions. At
a system state Sa},a?» we define the droop factor by a linear function
f(d1,d2). Where d; represents the maximum vertical distance between
the extremities of the prepreg and {a%,a?}. While dy represents the
maximum vertical distance between the vertices of the grasped edge and

{az-l, a? }, if this deformation value is larger than a certain threshold, we

can conclude that there is excessive drooping.

7. Sheet Alignment: A typical mold for composite draping possesses de-
marcations that define a bounding region for the prepreg draping. Sheet
alignment is the measure of undershoot or overshoot of the prepreg P o2

beyond this demarcated region.

8. Robot Manipulability Index: We introduce this constraint as a planning
constraint rather than a process constraint. The robot manipulability in-
dex [162] is a quality measure of the closeness of the grasping manipulator
to a singular configuration. This index ensures that the manipulator can

transition between stages ¢ — ¢ + 1 successfully.

The states satisfying these constraints are then termed as feasible states. We
represent one such feasible state at i by a variable w;. Additionally, we intro-
duce a new parameter ¢! 41 Which represents the time required for transitioning
between contiguous states {w; to w;y1}. The total time for the overall grasping
process then gets defined by T', such that T' = Z?;ll ;‘:_H. We formulate the
grasp planning problem as an optimization problem where the objective is to

minimize T for the overall draping process. An optimal grasp plan 2 is thus

represented by

Q= {w1,wa,...,wn}, (7.2)

140

such that €} minimizes the total time T across all possible combinations of
feasible grasping locations w; for the entire draping process (all n draping

zones).

7.4 Grasp Planning

In order to solve the multi-robot grasp planning problem formulated in section
7.3, we simulate the prepreg as a thin shell finite element model with appro-
priate material parameters using VegaF'EM [11]. This model is employed to
simulate the sheet deformation at a state S,1 2. The thin shell FEA simulator
can compute the Elastic Energy and Droop Factor constraints. The rest of
the collision and proximity constraints are evaluated using the Flexible Colli-
sion Library [163]. We use this architecture to perform constraint satisfaction
across Sal;,alg to construct a search space graph of feasible states comprising

w;’s. Subsequently, we compute a shortest-time path across the graph that

defines the optimal grasp plan €.

7.4.1 State Space Discretization

State space representation for the grasp planning problem was outlined in
Section 7.3. The states are defined by S ol a2 The aim is to explore the space of
feasible grasping locations o} and a?. The state space is discretized in order to
search for feasible 5,1 ,2’s. Based on experimentation, a discretization factor
between 3-5% of the prepreg dimensions is used. The variables ® and ¥ are
discretized accordingly. This makes the graph construction for the composite
grasp planning a combinatorial problem, which we tackle by bounding our

search space.

141

7.4.2 Bounding the Search Space

Let us consider an input prepreg sheet P approximated as a m-sided polygon
as shown in Fig. 7.4. Since Py is a section of P that has already been draped,
we won'’t be considering Py in our heuristic design. Similarly, P; is the incum-
bent section on which draping will be performed in direction V. The sections
{ Py, P3, P;} represent the undraped portion of the prepreg as described in Fig.
7.4. Parameters {a;, b;} denote the characteristic length and width of the cor-
responding sheet region P;. Based on our experiments with prepreg draping,
we have observed that the direction of draping Vv and the length and width
of the entire prepreg {L, W} play a crucial role in selecting the edge along
which the prepreg should be grasped. The edge, which is orthogonal to the
direction of draping v and is positioned at a maximum distance from Py, is
optimal for grasping the prepreg; grasping along any other edges introduces
process constraint violations. If a region P; has multiple directions of draping,
we would choose multiple edges accordingly. This discards the potential w; ;

along the other edges.

In order to set the bounds on W, we consider the characteristic lengths and
widths of P; and of the set {Pa, P3, Py}. The selected edge is divided into
two sections for {a},a?}. In our study, for an arbitrary W, we set the orienta-
tion (7, p,y) to a value equal to (¢, pe, Ye), which represents the orientation of
selected edge e € {1, m} in the base frame. We introduce a bound in the carte-
sian space for corresponding ¥’'s for {a%, a?} as a function of the parameters

{ala bla az, 627 ag, b37L7 W}

Additionally, we assume symmetry between the positions of the manipulators
along the draping axis. This assumption is valid only if draping is performed
along the central axis of the prepreg. This further constrains the search space.

Hence we achieve a bounding region within which we can search for all feasible

142

Edge 3

\Qua

Edge 4

Edge 5

Edge m-4 Edge 6

Figure 7.4: The Prepreg P is divided into different sections. Py: Draped
Section, P;: section about to Be Draped, P»: Left Undraped section, Pis:
Front Undraped section, Py: Right Undraped section, as, bs: Characteristic
length and width of the section with index 3.

143

grasping locations w;s for every draping stage {1,2,....,n}. Once we generate
a set of appropriate {®, U} for {a}, a?} at it" stage based on our heuristic, we
apply the eight constraints and populate the search space graph with all the
feasible w;. This leads to generating a search-space graph of depth n; recall

that n is the total number of draping zones.

The objective of the graph-based search is to compute a grasp plan that can
be executed in the minimal amount of total execution time T, as defined in
Section 7.3. Currently, we have a set of nodes representing the feasible grasping
locations w’s. To create a complete graph G = {V, E} we need to define and

compute the cost associated with edges F.

During draping, the manipulators operate under impedance control. This is
mainly done to avoid any potential deformation of the prepreg under external
draping forces. As a result of the impedance control, the robots tend to move in
a radial direction towards the line of draping, which is defined by the boundary
between the draped and the undraped sections of the prepreg. This movement
is proportional to the impedance control parameters. In order to account for
this minor displacement, we add an additional layer at each i representing the
displacement in the location of the robots. We denote this layer by i. The

manipulators travel to the next region ¢ + 1 from this intermediate layer.

7.4.3 Graph Construction

We set the edge cost to the time required for the manipulator to travel from
region 7' to i + 1. Note that edges are added only among nodes in adjacent
regions. The transition time cost of the manipulators for i — 7' can be assigned
to zero, as this transition does not influence the overall time for grasping
actions. This work assumes that the manipulators will execute the trajectories

at nearly constant velocities. They follow a linear path along the edge in case of

144

Figure 7.5: Grasp Planner Search Graph. wj* is one of the feasible states at
i =1 and t3{ is time taken to travel from node wj,to w3

a change in the grasping vertex, then diagonally to the next grasping location.
We compute the time té,ﬂ, which gives us the edge cost and completes the
construction of our search-space graph. Furthermore, to aid in finding the
path with the least cost and in the spirit of dynamic programming, we add a
pseudo source node connected to the first layer with zero-cost edges. Similarly,
a pseudo destination node is added at the n** layer with zero-cost edges. Refer

to Fig. 7.5 for the structure of the search space graph.

7.4.4 Grasp Plan Generation

Once the feasible graph G is constructed, the computation of the shortest-time
path becomes a shortest-path search problem. Using Dijkstra’s algorithm, we
compute the shortest path from the source node to the destination node. The
computed path is our solution €2, representing the optimal grasp plan for the

two manipulators. Fig. 7.6 depicts the overall grasp planning process.

145

Grasp Planner

Defining
Search Space

Sheet Mesh

Constraint
Satisfaction

Simulation
System

=

Optimizing for

Sheet Region
Definition

Bounding
Search
Space Using
Heuristics

Figure 7.6: Overall Process Flow for Grasp Planning.

7.4.5 Results on Representative Examples

Our planner was successful in computing feasible grasp plans for the molds
with a wide variety of complexities. Fig. 7.8 shows three representative exam-
ples. We conducted physical experiments on the mold Part A (see Fig. 7.7).
Table 7.1 displays the overall time analysis of the search. The time taken for
the search is directly proportional to the number of vertices and edges of the
prepreg mesh and the number of discrete states across which we conduct the

search.

Table 7.1: Grasp Planner Results

Type of | No. of | Plan Gen- | Total
Mold Draping eration Grasp
Regions Time Plan Pro-
(n) (secs) cess Time
(secs)
Part A 9 945 154
Part B 6 641 122
Part C 8 236 135

146

I

REGION 5§

REGION 6
I ReGION 7 REGION 8

REGION 9

Figure 7.7: Grasping positions for the 9 draping zones in simulation and
physical setup for Part A.

147

7.5 Intervention Controller

7.5.1 Overview

The viscoelasticity of prepreg materials lead to a change in their material
properties over time, which introduces errors in the material parameter model.
The plans generated from our proposed methodology in section 7.4 exhibit an
inherent dependency on the material parameter model. A potential error in
estimating the material parameters can lead to inaccuracies in the grasping
locations. An online closed-loop system is needed to check the integrity of the
prepreg draping process and raise an alert in case of deviations from the ideal
planned scenario. We introduce an intervention controller system that acts as
an online monitoring and verification system for the grasp plans generated by

our planning algorithm.

Figure 7.8: The three molds on which the grasp planner was tested. These
molds vary in terms of the complexity of surface features and the draping
strategy.

The sheet is tracked in real-time by employing a sheet tracking system com-
prising three RealSense D415 sensors. The primary function of this system
is to generate a filtered point cloud of the undraped composite sheet at each
grasping location. The raw point cloud data of the prepreg from each of the

three RealSense D415 sensors is filtered and merged to create a unified tracked

148

point cloud of the composite sheet. This data can then be used to compare

the simulated and observed data.

7.5.2 Constraint Violation Monitoring

In order to detect anomalous behavior, we employ a similar constraint sat-
isfaction methodology as discussed in section 7.4. We record the prepreg’s
point cloud P(t) at time ¢ using the RealSense sensors. We perform constraint
satisfaction on P(t) for the proximity, collision, and alignment constraints
by using a pre-recorded point cloud of the mold. We measure the force and
torque experienced by the manipulator’s grasping the sheet to monitor the

Elastic Energy.

During the planning, we archive the simulation data of the prepreg at each
of the feasible states in our optimal grasp plan . This data comprises the
constraint values for the prepreg’s simulated model at every draping zone 1.
We compare this data against the constraints evaluated from real-time sheet
tracking data to monitor and detect any constraint violations. The overall
process flow of constraint monitoring is depicted in Fig. 7.9. We compute the
error between the corresponding values of constraints for simulated data and

the point cloud P(t).

This error is a measure of the deviation of the sheet behavior at a draping
zone 1. If the error value exceeds a certain threshold, we trigger appropriate

actions to take corrective measures (see section 7.5.3).

7.5.3 Control Actions

The intervention controller executes certain control actions based on the mag-

nitude of the error defined in the section. 7.5.2. As discussed earlier, variations

149

Ve
/ Control Action Mechanism \\

Sheet Point

Sheet Tracking Cloud
System

Compute Constraint |
Values for Current :
I

Region
Comparison with|

L simulated data |
No violation

Process
observed

Continuation
without Correction

Check for
Constraint Violation

Violation
observed

Validate Correction .
Compute waypoints

to rectify constraints

Plan using Sheet
Simulator

—_——. e o — e e — e — — e —

— e — — — — — — — —

—_—— e —— — — ———

Figure 7.9: Process flow of Constraint Monitoring Method.

in the prepreg material parameter model impact the error’s value. We typi-
cally classify the required level of intervention into three cases, depending on

the level of inaccuracy in the material parameter model (see Fig. 7.10).

Draping
> Process
Continued
A

Intervention scenarios include the following:

Control .
Case 2: Error Satisfied

Actim.l Prone Model Position Correction
Mechanism and Validation using

Case 2a: Constraints

Simulator Data Case 2b: Constraints
Case 3: Highly Correction Needed
v

Inaccurate Model)
Draping

Process Halted

Figure 7.10: Process flow of our Intervention Controller.

o (Case 1: Accurate Material Parameter Model In this case, the generated
plans observe minimal deviations. Our grasp planner will generate feasi-

ble plans without the need for intervention.

150

e Case 2: Error-Prone Material Parameter Model: This case occurs when
there is a minor discrepancy in the material parameter model. Based
on the errors encountered in each of the constraints described in Section.
7.5.2 we take appropriate actions. For example, when the Droop Factor is
violated, we move the robots towards the extremity of the prepreg along

the grasped edge using a value proportional to the error.

e Case 3: Highly Inaccurate Material Parameter Model: In this case, due
major discrepancy in the material model, we experience incorrigible de-
viations from the desirable locations. Consequently, a halt condition is

triggered.

7.5.4 Results

Figure 7.11: Comparison between different cases for material parameter
model. Row 1 depicts the simulated data for the four control action cases,
and Row 2 depicts the Real Sheet Configuration of the corresponding data.

We evaluated the grasp planning methodology on Part A (see Fig. 7.8) using
the composite layup cell described in Fig. 7.1. The experiments were con-
ducted under three different scenarios to assess the robustness of the planner

and the effectiveness of the intervention controller.

151

In Case 1, grasp plans were generated using an accurate material parameter
model (Fig. 7.11). The execution proceeded smoothly, with the intervention
controller reporting no violations of the predefined process constraints. The
planned grasp locations and deformations matched closely with the observed

sheet behavior during execution.

In Case 2, we introduced a 10% error in the material parameter model to sim-
ulate discrepancies between simulation and real-world behavior. As expected,
this led to violations in process constraints, which were detected by compar-
ing the real-time prepreg point cloud data with the simulation predictions.
Since the deviation was within the controller’s acceptable threshold, the inter-
vention controller successfully recomputed new grasp points. These updated
grasp locations were validated through additional simulations and confirmed
by comparing the resulting deformation with the actual sheet configuration.
The error at the adjusted locations remained within tolerance, allowing the
remaining draping plan to proceed with intermittent interventions across all

nine draping stages.

In Case 3, the material model was perturbed with a 20% error, exceeding the
controller’s predefined tolerance. As a result, the intervention controller acti-
vated its halt condition, preventing further execution to avoid compromising

the quality of the layup.

These results demonstrate the effectiveness of the simulation-informed grasp
planner and the resilience of the intervention controller in adapting to moder-
ate model inaccuracies, while also enforcing safe boundaries under significant

deviations.

152

7.6 Summary

This chapter presented a simulation-driven framework for planning and execut-
ing grasping strategies for large, deformable sheets in industrial settings. By
leveraging a high-fidelity, physics-based model of sheet deformation, the frame-
work enables robots to autonomously generate feasible and task-compliant
grasp plans, specifically tailored to the challenges posed by large-scale, adhesive-

backed materials commonly used in composite manufacturing.

A novel state-space search formulation was introduced to explore candidate
grasping configurations under realistic physical constraints. This approach in-
tegrates simulation directly into the planning loop, ensuring that deformation
behavior, gravitational sag, and contact interactions are accounted for prior to
execution. The resulting grasp plans were validated through physical experi-
ments in a hybrid human-robot layup cell involving three collaborative robots

and a human operator.

The grasp plans were successfully validated in a collaborative human-robot cell
involving three robotic arms and a human operator. An intervention controller
was developed to handle discrepancies between the simulated and real-world
behavior, such as those introduced by material aging or parameter estimation
error. This controller uses real-time point cloud feedback from a sheet track-
ing system to detect violations of process constraints and dynamically adjust
the grasp strategy as needed. Experimental evaluations demonstrated the sys-
tem’s ability to adapt to moderate inaccuracies and halt execution safely when

constraints could not be maintained.

Together, the components introduced in this chapter demonstrate how simulation-
informed planning combined with closed-loop feedback control can enable the
manipulation of large, high-variance deformable objects with high precision

and reliability. This work contributes to the broader dissertation goal of

153

building intelligent, physics-informed systems capable of executing complex

manipulation tasks in unstructured industrial environments.

154

Chapter 8

Learning the Effect of Compliance on Manipulation

under Uncertainty

8.1 Introduction

p— - =2

P

(a) Satellite Assembly -

Aerospace (¢) Automotive

Figure 8.1: Examples of HMLV settings where screwdriving is performed
routinely in non-gravity assisted scenarios and tight spaces. Image
Courtesy: (a) https://nanoavionics.com, (b) https://blog.satair.com,
(c)https://assemblymag.com

Previous chapters have focused on the challenges of manipulating deformable
objects, emphasizing the need to model and plan around their dynamic be-
havior under contact, force, and environmental variability. However, deforma-
bility—or more broadly, compliance—is not limited to the object being ma-
nipulated. In fact, compliance has long been a foundational principle in the
design of tools that humans use for high-precision or high-uncertainty tasks.
From mechanical grippers with spring-loaded tips to hand tools like ratch-

ets and torque-limiting screwdrivers, compliance is intentionally embedded in

155

https://nanoavionics.com
https://blog.satair.com
https://assemblymag.com

tool design to improve adaptability, robustness, and ease of use in uncertain

or unstructured environments.

This principle is equally evident in industrial contexts. Many tools used in
manufacturing and maintenance rely on mechanical compliance—typically re-
alized through passive elements such as springs and dampers—to absorb po-
sitioning errors, reduce force peaks, and improve tolerance to misalignments.
Screwdriving, for instance, often involves rotary tools with embedded torsional
springs and compliant couplings that allow engagement to occur even when
there are small errors in position or orientation. These compliance mecha-
nisms facilitate task success and play a critical role in failure avoidance during

insertion.

Humans naturally exploit such compliance in tool use, enabling them to carry
out tasks reliably even in uncertain or dynamically changing environments.
This is especially important in maintenance or servicing tasks, where the
setup is often unstructured, and the object geometry or pose may vary sig-
nificantly across instances. While mass-manufacturing environments mitigate
such uncertainty through expensive fixtures and precision jigs, high-mix, low-
volume (HMLV) scenarios—characterized by part variability and small batch
sizes—cannot justify the cost of such infrastructure (Refer Fig. 8.1). In these
cases, humans leverage both passive compliance in the tool and active com-
pliance in their motor control strategies to complete tasks reliably. With the
ongoing labor shortage in manufacturing [164|, there is an urgent need to

transfer this adaptability to autonomous robotic systems [165].

This chapter investigates how robots can exploit compliance in tooling and
control to perform screwdriving tasks in uncertain environments, particularly
those representative of HMLV settings. Screwdriving is selected as the central

use case due to its pervasiveness in assembly and maintenance operations, its

156

sensitivity to positional uncertainty, and the availability of established tool

designs that incorporate compliance.

In contrast to traditional automation systems designed for structured, repeat-
able operations, the framework developed here supports autonomous robotic
screwdriving under uncertainty (Refer Fig. 8.2 for a demonstration of the
system for a servicing operation). The proposed system uses a combination

of:

e A passively compliant rotary tool
e A robotic manipulator operating in Cartesian impedance control mode

e Multimodal sensing (vision and force)

Such a setup enables the robot to absorb minor misalignments and to reason

over the effects of compliance during the screwdriving process. A key contri-

Figure 8.2: The Proposed mobile screwdriving system performing servicing
operation. The image from the in-hand camera on the bottom left corner
shows how the screw is offset on initial contact. The reader is advised to
review the video at Video Link for better understanding

bution of this work is a physics-informed learning model that captures how

157

https://youtu.be/W0S4tSSkWQQ?si=Zs8IKlditNQvKWKx

compliance—both passive and active—influences the dynamics of the screw
tip during the insertion phase. Using Sparse Identification of Nonlinear Dy-
namics (SINDy), the system learns interpretable models of screw-tip behavior
as a function of tool compliance and robot orientation. This model is not only
predictive but also plays a critical role in decision-making, enabling the robot

to adapt insertion strategies or trigger reattempts when necessary.

Additionally, a robust decision-tree-based failure detection mechanism is in-
troduced to monitor and respond to process anomalies. This system uses
force-based signals, rather than image-based cues, to classify failure modes
and trigger corrective actions. By integrating model-based prediction with
real-time sensing, the system can detect five distinct failure types and respond

either by adapting the control strategy or escalating to human intervention.

The contributions of this chapter include:

e An autonomous mobile robotic screwdriving system featuring a passively
compliant rotary tool mounted on a robotic manipulator operating in
Cartesian impedance control mode, equipped with 3D vision and force-
sensing capabilities enabling it to perform screwdriving in high-mix, low-

volume environments with significant uncertainty.

e A self-supervised, physics-informed model of screw-tip dynamics that
correlates system parameters with process success rates and completion
times, enhancing the system’s ability to adapt and predict performance

across various parts and screw types.

e A decision-tree-based failure detection system that identifies four dis-
tinct failure modes, enabling corrective actions. Additionally, we intro-
duce a time-based failure detection mechanism that leverages the physics-
informed dynamics model to determine when a reattempt at screwdriving

is necessary.

158

Extensive experiments validate the system’s ability to perform screwdriving
across ten real-world industrial parts and three screw types (M4, M5, M6),
including tests in non-gravity-assisted configurations. The system achieves a
100% success rate under hole pose uncertainties up to 4 mm / 3°, with an aver-
age completion time of five seconds, highlighting its suitability for deployment

in real-world, high-variability environments.

8.2 Background

The importance of compliance in autonomous screwdriving has long been rec-
ognized, with nearly all commercially available screwdriving tools incorporat-
ing some degree of compliance in their design. Additionally, active compliance
strategies, such as impedance and force control, are commonly employed [166].
While compliance is a well-established concept, its precise influence on screw-
tip motion, insertion dynamics, and failure modes remains underexplored. Pre-
vious work [4] provided an initial investigation into these effects, focusing on
how compliance affects success rates under uncertainty. In this section, we
build upon that foundation by offering a systematic analysis of both passive
and active compliance, detailing their distinct roles in error compensation,

failure mitigation, and operational efficiency in autonomous screwdriving.

Passive Compliance: Passive compliance arises from the inherent design of
the screw-driving tool and its mechanical components, such as the motor, ar-
mature, shaft, and springs. These components collectively impart compliance
to the system, which can be modeled as a spring-mass-damper system. While
passive compliance cannot be actively controlled or adjusted during opera-
tion, it can be characterized to understand its influence on screw-tip dynamics

during the screw-driving process.

159

(a) Passive
Compliance (b) Active Compliance (c) Screw-tip Motion Band

(d) Time snapshots of screw-tip with significant hole-offset

Figure 8.3: (a) Compliance in the screwdriving tool. Here, K is the
stiffness, and C is the damping parameter. For the tool, there is compliance
even in the torsional direction, as shown in (b) Compliance in the Agent
due to impedance control. The robot’s end-effector acts as a virtual
spring-mass damper system. Here, K propor 18 the stiffness and Cpropor is the
damping. (c) Motion Band Traced by Screw-tip, due to interaction
between the compliances. Chances of success are high when this band
passes through the hole’s attractor basin, (d) Time snapshots of screw tip
motion depict how screwdriving can be successful even in the presence of
significant hole offset. At t3, the screw tip enters the hole’s attractor basin,
initiating the alignment process. The robot’s active compliance then
facilitates correction, ensuring smooth and successful insertion despite
initial misalignment.

160

Active Compliance: Active compliance is introduced through the use of
impedance control during the manipulator’s screw-driving operation. By regu-
lating stiffness and damping parameters in the Cartesian impedance controller,
the system ensures safe interaction with the part by avoiding excessive forces.
These tunable parameters significantly influence the screw-tip dynamics, al-
lowing precise adjustments to the system’s compliance behavior and improving

adaptability in high-uncertainty environments.

The interaction between passive and active compliance results in a character-
istic motion pattern of the screw tip upon contact with the surface, forming
what we define as the "screw-tip motion band." This motion band represents
the bounded region within which the screw tip moves as a consequence of
the combined effects of compliance in both the robot and the environment
(Refer Fig. 8.3). The shape and extent of this band are influenced by factors
such as impedance parameters, contact forces, and the screwdriving dynamics.
Understanding this motion band is crucial for accurately modeling screw-tip
behavior, predicting insertion success, and designing corrective strategies for

failure recovery.

8.3 Related Work

8.3.1 Robotics and Automation in Screwdriving

Screwdriving is a routine yet crucial industrial operation, and numerous au-
tomation methods have been explored over the years [167-169]. Advances
have been made in various aspects, including smart end-effector design [170,
171], part-feeder and automated gantry systems [167, 172, 173], visual ser-
voing [174], and vision-based screwdriving systems [175, 176]. Additionally,

some research has explored robotic manipulation of hand tools designed for

161

human use [177]. However, very few studies have systematically analyzed the
underlying factors that contribute to successful screwdriving or attempted to
quantify them. Moreover, research on screwdriving under uncertainty, par-
ticularly in high-mix, low-volume (HMLV) manufacturing, remains limited.
In [178], the authors propose a screwdriving approach for uncertain environ-
ments, but their focus is on servo-controlled torque estimation without exter-
nal sensors. Similarly, [179] presents a vision-based approach for operating in
semi-structured environments, yet it requires extensive calibration and does
not explicitly quantify the effects of uncertainty. Other works, such as [180,
181], have addressed screwdriving for maintenance applications. However,
[180| primarily focuses on simulation, while [181] examines a non-standard
screwdriving task specific to a single screw type. A comprehensive survey
by [166] provides an overview of automated thread-fastening systems, for-
malizing key terminologies that we adopt in this work. Among the critical
factors in screwdriving, compliance has long been recognized as essential for
successful operation [182-184]. While several studies have leveraged compli-
ance in screwdriving, no prior work has quantitatively analyzed its impact
on success rates. More recently, research efforts have focused on developing
robotic frameworks and policies for manipulating human-centric screwdriving
tools [172, 177, 185]. However, numerous robot-compatible screwdriving tools
are commercially available that could enhance system resilience and efficiency.
While previous works have demonstrated the significance of robotic screwdriv-
ing across various applications, the proposed work’s focus is on quantifying the
effects of compliance and uncertainty on success rates, studying different screw

types, and investigating applications in HMLV settings.

162

8.3.2 Defect Detection for Screwdriving Operations

In Section. 8.6, we've defined the five key modes of failure that we’re interested
in detecting alongside the nominal operation mode. In a high-speed operation
such as screwdriving, detecting failures is quite important. Naturally, exten-
sive research has been dedicated to failure detection, [186-189|, with a strong
emphasis on using wrench signals as the primary sensing modality. However,
most prior work has been limited to detecting only a small subset of failure
modes. In previous work [4], a multi-modal deep learning approach that fuses
vision and wrench data to classify two failure modes was explored. While
learning-based methods offer advantages, particularly in structured environ-
ments with low uncertainty, they are often highly sensitive to environmental
variations and require large amounts of training data to generalize effectively
[190-192]. Similar trends can be observed in recent data-driven anomaly de-
tection methods [193-195|, which have demonstrated strong performance un-
der controlled conditions but often struggle with scalability and robustness in
real-world deployments, especially in high-mix, low-volume (HMLV) settings
where uncertainty is high. To address these challenges, we seek a more scalable
and generalizable failure detection approach. Incremental learning techniques,
such as the one proposed in [196], have been explored for screwdriving appli-
cations, but they primarily focus on binary anomaly detection-determining
whether a state is normal or anomalous-rather than providing a fine-grained
classification of failure modes. Similarly, Hidden Markov Models (HMMs)
have been proposed for failure detection [197], leveraging screwdriving pro-
cess mechanics and a stage transition graph to improve generalization across
screw types with minimal labeled data. While HMMs offer an efficient way

to model process stages, their reliance on structured stage transitions makes

163

them less effective in high-mix, low-volume (HMLV) settings, where screw-
driving processes often deviate from expected sequences. Additionally, HMMs
require sequential inference over multiple time steps, which introduces com-
putational overhead and limits their suitability for real-time failure detection
in high-speed screwdriving. In contrast, Decision tree-based methods have
been successfully utilized for various tasks in high-mix manufacturing [198],
demonstrating their effectiveness in handling diverse and dynamic production
scenarios. Authors in [199] demonstrated the advantages of using a decision
tree to detect failures for one screw type in the presence of only passive com-
pliance. The work proposed in this chapter draws inspiration from them,
where we build upon the decision-tree-based framework for force-based failure
detection. Furthermore, the proposed approach extends this decision tree-
based methodology by introducing a more refined feature set and allowing for
generalization across different screw types (Refer Section. 8.6 for details). Ad-
ditionally, the data augmentation strategy enables effective failure detection
with substantially lower data requirements, making the proposed approach

more suitable for real-world HMLV manufacturing environments.

8.3.3 Dynamics Modeling for Screw-tip Motion

The dynamics of the screw tip studied in this work exhibit highly non-linear
behavior, primarily due to the interplay between compliance modes and ex-
ternal forces. The primary objective in modeling the screw-tip dynamics is
to characterize the effect of compliance on its motion rather than achieving a
complete predictive model of the entire screwdriving process. Recent advances
in learning-based methods have unlocked new possibilities for modeling such
complex, non-linear dynamics [200, 201|. Over the past decades, data-driven
approaches have demonstrated remarkable success in capturing intricate object

dynamics [202, 203|. However, most neural network-based models require large

164

amounts of training data and often struggle with generalization over long time
horizons. Additionally, black-box learning models lack explainability, making
them unsuitable for high-stakes industrial applications such as aerospace man-
ufacturing, where reliability is critical, particularly in high-mix, low-volume
(HMLV) settings. Conversely, purely analytical physics-based models, which
define dynamics using explicit mathematical formulations, offer advantages
in terms of data efficiency and interpretability. However, these models often
fall short when attempting to represent extreme non-linear behaviors, such as

those encountered in real-world screwdriving operations.

Recently, physics-informed machine learning approaches [204—210] have emerged
as a promising alternative, bridging the gap between purely data-driven and
fully analytical methods. These hybrid techniques integrate physical priors
with learning-based frameworks, allowing for better generalization with a rea-
sonable amount of training data while preserving a degree of explainability.
This makes them particularly well-suited for industrial automation and appli-
cations where insight into the underlying dynamics is necessary. In this work,
the proposed method takes inspiration from Sparse Identification of Nonlinear
Dynamical Systems (SINDy) [204, 210, 211|, which has demonstrated supe-
rior performance compared to both purely data-driven and purely analytical

approaches.

Despite prior work on screwdriving process modeling using analytical methods
[169, 212] and recent advancements in physics-informed techniques applied to
industrial automation [6, 213, 214|, no prior research has specifically exam-
ined screw-tip dynamics in the presence of compliance. The exploratory work
[4] was the first to explore this phenomenon, introducing the concept of the
screw-tip motion band and demonstrating preliminary insights into its be-
havior. However, that study was limited in scope, focusing on only a few

compliance configurations and simplified modeling assumptions. In this work,

165

we build on that foundation by developing a more systematic framework for
analyzing screw-tip motion under compliance. The proposed approach ex-
tends previous findings by incorporating a broader range of compliance effects
and refining the modeling methodology. By integrating physics priors with
data-driven insights, we aim to provide a more generalizable and interpretable
understanding of screw-tip behavior, which could contribute to improved au-

tomation strategies in screwdriving applications.

8.4 System Overview

Figure 8.4: Hardware System Components of the mobile
manipulation-based screwdriving system.

8.4.1 Mobile-Manipulator-based Robotic Screwdriving System

The proposed system is designed specifically for high-mix, low-volume (HMLV)
settings where estimating the hole pose is inherently uncertain due to the ab-
sence of fixtures, as discussed in Section 8.1. The primary focus is on screw-
driving operations in assembly and maintenance/service contexts, which in-

volve variability in both part sizes and screw types. To successfully operate

166

in such settings, the system must be mobile, capable of autonomously maneu-
vering across parts, and able to navigate constrained environments, such as

manufacturing floors or workshops.

Taking these requirements into account, we propose a system comprising a
7-DOF manipulator mounted on a holonomic-drive mobile base (Refer Fig.
8.4). The manipulator is a KUKA LBR iiwa, equipped with joint-torque sen-
sors that provide force feedback. This robot also features an inherent Carte-
sian impedance controller, ensuring safe interaction with parts by preventing

damage during contact with the surface for screwdriving operations.

For the screwdriving tool, we use an industrial-grade Kolver Series CA screw-
driver, which employs a magnetic holder to accommodate screws with various
head types. Screws are reliably supplied by a Kolver NFK UNI Screw Feeder,
which is mounted on the mobile base in a fixed location to enable efficient tool

pick-up by the robot during operations.

The system also incorporates two Intel RealSense cameras for perception. The
first camera is mounted on the mobile base (eye-to-hand configuration) to lo-
calize the part within the scene. The second camera is mounted on the robot’s
flange (eye-in-hand configuration) and provides precise hole pose estimation
during the operation. Both cameras provide RGB and depth images, enabling

the system to operate under uncertain and variable conditions.

Finally, the tool and the eye-in-hand camera are mounted on the robot’s flange
using a custom 3D-printed fixture, ensuring proper alignment and functional-
ity. This comprehensive setup enables the system to reliably perform screw-
driving operations across a wide variety of parts and screw types, even in the

presence of significant uncertainties (Refer Fig. 8.4).

167

8.4.2 Software System Architecture

The software architecture of the proposed robotic screw-driving system is
structured around three core modules that enable successful operation, from
screw pick-up to insertion: (1) Planning and Control, (2) Perception and Sens-
ing, and (3) Failure and Fault Detection. Each module plays a crucial role in
providing information about the robot’s state, guiding the decision-making
process, and ensuring robust execution. The screwdriving process is modeled
as a finite state machine (FSM) that transitions through various states, start-
ing from screw pick-up and progressing to insertion (Refer Fig. 8.5). This FSM
framework enables precise handling of failures and faults, ensuring seamless
recovery and adaptability. The specific contributions of each module to the

FSM’s transitions, from the initial state to the goal state, are detailed below.

8.4.2.1 Planning and Control

The sequence of operations for the manipulator in the proposed robotic screw-
driving system involves three key stages: screw pick-up, transportation to a
pre-insertion configuration, and screw insertion. The manipulator begins by
picking up the screw from the screw feeder, then transports it to a pre-defined
position above the target hole, and finally approaches the hole to perform the
insertion. The initial steps, from screw pick-up to the pre-insertion position,
involve no variability in execution, allowing us to pre-compute the motion tra-
jectories and plans. For motion planning, we leverage Movelt 2, which utilizes
OMPL-based planners [215]. Specifically, we use the Anytime Path Shortening
planner with constraints on end-effector orientation and joint velocity. Com-
munication with the robot is facilitated by the LBR-FRI ROS 2 stack [216],
enabling real-time control in KUKA’s fast robot interface mode. Planning

is done in Cartesian space, and the robot is commanded with timestamped

168

trajectories via the Fast-Robot Interface that the LBR-FRI stack uses by com-

municating with the controller over the User Datagram Protocol (UDP).

Although this work primarily focuses on the screwdriving operation, we pro-
vide a detailed overview of the system’s end-to-end functionality to ensure
real-world applicability. A critical component of the process is ensuring re-
liable screw pick-up from the screw feeder. This is achieved by approaching
the screw head at low velocity while running the screwdriving tool in a coun-
terclockwise direction. Through experiments, we determined that executing
this deterministic motion for at least 5 seconds consistently achieves a 100%

success rate in screw pick-up.

For better precision, we use an ArUco marker strategically placed on the part
at a calibrated location, enabling accurate hole-pose estimation with minimal
uncertainty. Based on this estimate, we compute a motion plan to approach
the hole with the screw-driving tool activated. The screw-driving operation
itself is performed under Cartesian impedance control mode to minimize the
risk of part damage. We use KUKA’s built-in Cartesian impedance controller
for this purpose. The screwdriving tool, a Kolver Series CA tool, is controlled
via ROS Serial communication using an Arduino, allowing for commands to

adjust velocity, rotation direction, and start/stop functionality.

The base movement and control are performed via a custom stack developed
for the mobile base; all mobile base control-related information can be found
at https://github.com/RROS-Lab/. The entire software stack is built on ROS
2 [217], which serves as the middleware for seamless communication across the
system. This robust planning and control framework ensures the precise and

reliable execution of the screw-driving process.

169

https://github.com/RROS-Lab/

8.4.2.2 Perception and Sensing

Vision: The proposed system relies on two external RealSense cameras, which
provide aligned RGB and depth frames at a frame rate of approximately 30
fps. These cameras are essential for perception tasks, with distinct roles in the
system. The eye-to-hand camera (RealSense D415) is mounted externally and
is responsible for part localization (i.e., detecting ARUCO markers), allowing
the robot to identify and position itself relative to the target part. The in-
hand (or eye-in-hand) camera (RealSense D405), mounted on the robot’s end-
effector, plays a crucial role in generating time-series data that captures the
dynamics of the screw tip as it interacts with the surface. Both cameras stream
their RGB and depth data over ROS 2 topics, facilitated by the RealSense2

ROS package, ensuring smooth integration into the robotic system.

Robot Proprioception: The KUKA LBR iiwa 14 R820 robot enhances
perception through its joint-torque sensors, which provide rich proprioceptive
feedback. Using the KUKA API, the robot reports estimated Cartesian forces
at the end-effector. Additionally, the robot provides the precise position of its

end-effector relative to the base, enabling accurate tracking of its movements.

This proprioceptive data is available at a frequency of approximately 500 Hz,
offering high-resolution sensory feedback. The LBR-FRI ROS 2 stack is used
to retrieve and integrate this information into the system, ensuring reliable

and real-time communication.

8.4.3 System Operation

In addition to the software and planning components discussed in previous
sections, our system comprises two key modules: (1) the Screw-Tip Dynamics
Model and (2) the Defect Detection Model. Each module plays a crucial role

in process planning. Our system can be viewed as a finite-state machine (Refer

170

Figure 8.5: We demonstrate how our dynamics model and defect detection
module aid in decision-making for our system. Here we depict the entire
process flow from the start (screw pick-up) till the end (insertion) for our
system. The Numbered Blocks at the top are nominal operation modes. At
every stage, the defect detection module evaluates if a failure has occurred
or not. If failure occurs due to time elapse (Input 4), then a reattempt
strategy is triggered, or else we call for human help.

171

Fig. 8.5), where high-level decision-making is required to perform screwdriving

efficiently while minimizing failures.

Currently, when a defect is detected, an alert is triggered, prompting human
intervention for failure recovery before the system resumes nominal operation.
However, in an HMLV scenario, uncertainty in hole pose estimation can cause
the screw tip to keep moving in a motion band described in Section. 8.2
without successfully latching onto the hole. To handle such contingencies, our
dynamics model can be leveraged to compute an upper time bound (Tjpsert
in Fig. 8.5) for remaining in this state. If the screw tip does not engage
within this threshold, the system can autonomously reattempt screwdriving by
retracting and repositioning rather than relying solely on external intervention.
We demonstrate how every piece of our system interacts to enable this in Fig.

8.9.

By integrating the screw-tip dynamics model into our system design, we can
fine-tune state transitions within our finite-state machine. Specifically, this
enables us to define time thresholds for transitioning from an unsuccessful
insertion attempt to a reattempt strategy, reducing unnecessary dwell time in
failure-prone states. Sections 8.5 and 8.7.3 further elaborate on these concepts

and provide quantitative analyses of their impact.

8.5 Physics-Informed Discovery of Screw Tip Dynamics

As discussed in Section 8.2, the interplay between passive and active compli-
ance results in the screw-tip executing motion within a bounded region. If
the hole lies within this band of motion, the operation remains feasible even
when the screw tip initially makes contact away from the hole. While this
motion is inherently non-linear, it is fundamentally governed by the physics of

compliance. Our goal is to characterize this non-linear behavior by learning

172

Figure 8.6: Screw-tip Dynamics Model that takes the state information,
impedance control parameters, and robot orientation as input. The model
predicts the first-order time derivatives, i.e., the velocity of the screw-tip in
Cartesian space, in the robot’s base frame of reference. We achieve this by
first converting the screw-tip coordinates from image space to camera
frame and then to base frame.

173

a dynamics model of the screw tip. Such a model would elucidate the effects
of compliance on the screw-tip’s trajectory and provide actionable insights for

system design.

The primary motivation for learning such a model lies in its utility for process
planning, particularly in determining when to abandon an operation. For
instance, consider a scenario where the screw-tip has made contact with the
surface and is following the motion described in Section 8.2. Suppose we can
accurately predict the screw-tip’s position over time. In that case, we can
probabilistically estimate the time required for the screw to fall into the hole’s
attractor basin (Refer Section. 8.7.3). This estimated time can then serve as
a reference threshold, guiding the system on when to reset and reattempt the
operation if successful insertion has not occurred within the expected duration,

thus underscoring the importance of such a dynamics model.

There are multiple approaches to learning this dynamics model for given com-
pliance parameters. A fully data-driven approach, such as employing neural
operators or networks, is one option. However, these methods often lack ex-
plainability, require extensive time-series data for training, and struggle to
generalize to new scenarios or varying operating conditions [218]. In applica-
tions with high-mix, low-volume (HMLV) constraints, where data availability

is limited, these shortcomings become significant barriers.

To address these challenges, we adopt the Sparse Identification of Nonlin-
ear Dynamics (SINDy) framework. SINDy directly identifies the governing
equations of screw-tip dynamics by leveraging physics-informed assumptions.
Specifically, we hypothesize a family of candidate functions to describe the
dynamics and use sparse regression techniques to learn their parameters. This

approach ensures explainability and requires minimal retraining, making it

174

well-suited for systems that must operate under uncertainty and adapt to

changes in operating parameters.

8.5.1 Model Definition

Preliminaries: In order to formally define the dynamics modeling problem,
let us initially define a set of parameters and variables. Let X € R? denote
the state of the screw tip. Let X denote the first-order time derivative of X.
We only consider screw-tip dynamics once the tip has made contact with the
surface of the panel on which screwdriving is to be performed. Hence, t = 0
signifies the time instant at which the rotating screw tip makes contact with
the surface and executes the motion band. At a given time ¢, the system is
excited by an external control input U € R'®. The objective of the dynamic
model is to learn a function X = f(X,U). We also define © that denotes a
family of candidate functions comprising polynomial and sinusoidal functions,

in our case, that potentially define the dynamics of the screw-tip.

SINDy for Screw-tip Dynamics: In our system (Refer Fig. 8.6), X is
defined by the [x,y] € R? cartesian position of the screw-tip with respect to
a fixed frame of reference Tpyse, i.€., the robot’s base. We ignore z since the
screw-tip performs the described motion on a plane, i.e., the surface on which
screw-driving is performed. Consequently, X gets defined by the tuple [&,7].
The control inputs U are a function of the controller’s compliance parameters
and the robot’s state. Specifically, U is the robot’s end-effector orientation
Q € R? and the Cartesian impedance controller parameters K € RS and
C € RS. Where K is the stiffness and C is the damping that decides the
controller gains. Now, to model f(X,U), we employ SINDy methodology,
such that for a given family of candidate functions ©, our objective is to learn

parameters =, such that the following can be satisfied.

175

X =0(X,U)= (8.1)

Here, X = [X1,...,X,,] € R™ " represents a collection of m time snap-
shots of the state variable X € R", with X denoting the corresponding
time derivatives. In our case, we consider n = 2. The term O(X,U) =
[61(X,U),...,0,(X,U)] € R™*P defines a set of p candidate basis functions,
while 2 € RP*" represents the coeflicient matrix corresponding to these func-
tions in ®. The primary goal of the model is to estimate the coefficient

parameters in =.

In order to learn these coefficients, we optimize for the loss function as per Eq.

8.2.

Laynamic = M|IX = ©O(X, U) E|I3 + Azl |Z][3 (8.2)

Here, A1 and Ay are hyperparameters that control different aspects of the
model. The A\; term corresponds to the Mean Squared Error (L2-loss) function,
which drives the minimization of the error between predicted and observed

values. Meanwhile, A9 enforces regularization, helping to prevent overfitting.

Additionally, we incorporate sequential thresholding, where for every it train-
ing step, we set coefficients below a predefined threshold € to zero. This en-
courages sparsity in the model, ensuring that only the most significant terms
with dominant coefficients are retained. For @, we construct a feature library
consisting of polynomial terms up to the third order, along with sinusoidal

functions.

176

Figure 8.7: The four different failure modes studied in this work. We can
observe that for each of them, the wrench signals have distinctive
characteristics.

177

8.6 Failure Mode Detection

Defect detection is a critical component of any industrial robotic system, en-
suring resilience and the ability to handle various failure modes effectively. In
a robotic task execution framework, the system relies on a set of controllers to
perform motions, receiving post-condition feedback to determine task success.
A failure mode is identified when these post-conditions are not met, indicating

an issue in execution.

In the context of screwdriving, failure detection follows a similar principle. A
successful insertion can be defined based on specific post-condition metrics,
such as wrench signals and the robot’s final position upon task completion.
Through analysis, we observe that the primary failure modes in screwdriving
can be characterized as functions of the external wrench (Refer Fig. 8.7).
Throughout the screwdriving process, from screw pickup to final insertion,
multiple failure modes may arise. To ensure smooth operation and enable
efficient failure recovery, we develop a defect detection system capable of iden-

tifying five key failure modes:

e Stalling of Operation - Occurs due to equipment malfunction, particularly

when the system fails to execute a controller properly.

e Detached Screw - Happens if the screw detaches from the tool-head during

the process

e Thread Jamming - Arises when excessive friction builds up due to im-
proper thread engagement, potentially leading to damage or deformation,

thereby preventing further insertion.

e Misaligned Screw - A failure mode caused by improper screw pickup,

leading to unsuccessful insertion as the screw-driving tool loses control

178

over the screw’s motion. This is also the main cause of cross-threading

[166]

e Timeout Failure: This failure occurs when the screw tip continues mov-
ing within the motion band without reaching the hole’s attractor basin,
preventing successful insertion. The failure is triggered when the elapsed

time surpasses a predefined threshold.

The defect detection system operates in parallel with the execution process,
facilitating real-time intervention by activating corrective controllers or alert-
ing human operators when automated recovery is not feasible. This framework
enhances the reliability and adaptability of robotic screwdriving operations,

minimizing downtime and ensuring robust failure mitigation strategies.

In prior work [4], a deep learning-based multi-modal failure detection frame-
work was explored. While such methods can be highly effective, they are often
sensitive to environmental variations (e.g., lighting conditions, component col-
ors) and require large amounts of data, which can be difficult to collect in high-
mix, low-volume (HMLV) manufacturing settings. Furthermore, vision-based
deep learning methods can introduce deployment challenges, particularly in
dynamic industrial environments. To address these limitations, we need a
more scalable and generalizable approach that relies exclusively on force sig-
natures. Therefore, we did not pursue deep learning-based methods in this

work.

In [199], the authors demonstrated the robustness of a decision tree-based
methodology compared to other approaches, such as Long Short-Term Memory
(LSTM) networks, Support Vector Machines (SVMs), and Logistic Regression
(LR) for screwdriving applications. Their results highlight the strength of
decision trees in failure detection for screwdriving, making them an attractive

choice for industrial applications. Our observations and experiments align with

179

(a) Part A with M4 Screw and 30 Deg Part Orientation

(b) Part B with M6 screw and 90 Deg Part Orientation i.e, part laid flat horizontally

Figure 8.8: Variation in Wrench Signals Across Different Screw Types and
Orientations. This figure illustrates how wrench signals vary when
performing screwdriving operations on different parts, screw types, and
orientations. Note that these wrench signals were recorded for a successful
screwdriving insertion for the fairness of comparison. Notably, while the f,
signal exhibits similar overall characteristics, we observe shifts in sign,
gradient, and distinct variations in other force and torque signals during
both the insertion and tightening phases. These variations highlight the
challenges of directly applying prior methods and underscore the need for a
more adaptable approach—as proposed in our work-to ensure robustness in
high-mix, low-volume (HMLV) manufacturing.

180

these findings, reinforcing the efficacy of decision trees in structured failure
mode classification based on sensor patterns. Consequently, we also adopt a
decision tree-based classifier, leveraging its advantages in terms of robustness,
interpretability, and ease of deployment, which are critical factors in real-world
industrial automation where adaptability and reliability are critical. Of the
five failure modes mentioned, the decision tree is used to detect the first four,
while the dynamics model provides the necessary information to trigger the

fifth mode, as previously discussed.

The approach presented in [199] explored an instance of a problem with the
following attributes: (1) a single screw type, (2) screwdriving is performed in a
gravity-assisted orientation, and (3) Compliance is in the tool (Passive), with
no active compliance strategies in the robotic system. Our work generalizes
the previous work. Our experiments (Refer Fig. 8.8) indicate that even sub-
tle differences from variations in screw geometries, torque requirements, and
insertion orientations can introduce significant variabilities in sensor readings.
These variations make it challenging to directly use the results reported in
[199]. Moreover, a fundamental constraint in HMLV settings is the inabil-
ity to collect large failure datasets due to the diverse and evolving nature of
tasks. To overcome this, we propose a novel data augmentation strategy that
systematically enhances the collected data, ensuring that the decision tree
is trained with appropriate inductive biases. This augmentation enables our
methodology to generalize across different screwdriving conditions, making it

significantly more deployable in HMLV automation.

8.6.1 Data Augmentation and Pre-processing

To enable real-time defect detection, we temporally segment sensor signals,

creating a structured state representation with a fixed time interval, AT,

181

which can be adjusted based on operational requirements. We assign state
labels within each interval using self-supervised signal analysis, ensuring a

well-defined mapping between sensor readings and failure modes.

For model training, we initially process wrench data collected from the robot’s
joint torque sensors during experiments. Each data segment is labeled accord-
ing to its corresponding failure mode. However, given the limited availability
of experimental data, augmentation is necessary to enhance model robustness
against variations and sensor noise. Additionally, raw wrench signals often ex-
hibit inherent noise and fluctuations within a given sampling window, which
can affect classification accuracy. To address these challenges, we apply a series
of pre-processing operations to extract informative features while making the
model resilient to noise. Specifically, for each sampling window, we perform

the following;:

e Gaussian Noise Injection: We introduce noise sampled from N (u,0) to

simulate sensor variations.

e Low-Pass Filtering: The noisy signal is passed through a low-pass filter to
retain essential low-frequency components while reducing high-frequency

fluctuations.

e Periodic Disturbance Modeling: We incorporate sinusoidal perturbations
to account for periodic disturbances commonly observed in real-world

settings.

e Time Shifting and Amplitude Scaling: Time shifting is applied to han-
dle phase variations, while amplitude scaling ensures robustness against

intensity fluctuations.

By leveraging these augmentation techniques, we generate high-quality syn-
thetic variations of real-world data, enabling the decision tree-based classifier

to generalize effectively across different operating conditions. This ensures a

182

reliable and scalable defect detection system suitable for industrial deploy-

ment.

8.6.2 Feature Extraction

Following the data augmentation process described in Section 8.6.1, we im-
plement a multi-stage feature extraction methodology to handle the non-
stationary characteristics of wrench signals. The proposed pipeline computes
nine temporal and statistical features through sliding window analysis with

window size t.

Feature Definitions For a signal window X = {z1,z2,...,ay} with N =
t - fs samples (fs = sampling frequency): (1) Mean:u = %ZZ]\LI xi, (2) Std.

dev.: 0 = \/% Z,f\il(xl —)2, (3) RMS: zrus = \/ & Zf\il z?, (4) Skewness:
= “‘3[({_7;“)3}, (5) Kurtosis: 2 = E(XC-wf] 3, (6) Zero Cross Rate (ZCR):

ol

71
g S (@i < 0), (7) Energy: E = YN ||, (8) Entropy: H(X) =

N . P
— S plogy i, (9) Correlation: pyy = Zizl(xzazzgz)(yl Ky)

Each of these features was selected through rigorous analysis of the wrench
data and validated using Principal Component Analysis (PCA). The model’s
performance benefits significantly from this feature set because they capture
complementary aspects of the wrench signal characteristics: temporal statistics
(14, 0, Tmax, Tmin) quantify the signal’s amplitude variations, higher-order mo-
ments (71, y2) detect subtle changes in signal distribution, while information-
theoretic measures (H(X), ZCR) effectively identify transient anomalies and
mode transitions. The pairwise correlation coefficients further enhance fail-
ure mode discrimination by capturing the coupling between different wrench
components. Through PCA, we verified that these features exhibit minimal
redundancy while maintaining high explanatory power. The window size ¢t was

optimized through cross-validation on the dataset, with ¢ = 150 ms providing

183

an optimal trade-off between stationarity assumptions and detection latency

requirements.

8.6.3 Decision Tree-based Defect Detection

The features described in Section. 8.6.2 provides a state signature for detecting
the defects. The focus in this work is real-world deployment and scalability.
Considering the HMLV nature of the task and challenges pertaining to real-
world data, we choose the decision tree-based modeling framework that is well-
suited for this task due to its ability to handle non-linear decision boundaries,
its robustness to small dataset sizes and its interpretability, which allows for

insight into the key factors contributing to each failure mode.

The classifier takes as input the set of features f;,pu: computed over a fixed
sampling window AT, which encapsulates relevant statistical and temporal
characteristics of the wrench signals and robot state. Given these feature
representations, the decision tree learns a hierarchical set of rules that partition
the feature space into distinct failure mode classes. This structured decision-
making approach enables the classifier to generalize effectively to unseen data

while maintaining computational efficiency for real-time deployment.

To train the decision tree, we use labeled data collected from experimental
trials where each instance corresponds to a specific failure mode. The training
process involves feature selection, as outlined in the previous section. Subse-
quently, the tree is constructed by iteratively splitting the feature space based
on decision rules that maximize information gain using the Gini impurity cri-
teria. In order to prevent overfitting and enhance generalization, we apply
pre-pruning (depth constraints) and post-pruning techniques. The decision
tree model is integrated into the robotic system to perform failure mode clas-

sification in real-time. During execution, the system continuously monitors

184

the wrench signals and robot state, computing features over each sampling
window AT. The trained decision tree then classifies the failure mode and
triggers the appropriate response. The system invokes predefined contingency
controllers if the detected failure mode is recoverable. However, if failure re-

covery is infeasible, an alert is generated for operator intervention.

8.7 Experiments and Results

The experiments aim to evaluate the effectiveness of the proposed system and

validate the following key hypotheses:

e Real-World Suitability and Reliability: Does our system perform
reliably across a diverse set of parts and screw types in real-world appli-

cations?

e Generalization of the Physics-Informed Dynamics Model: Can

our model accurately predict screw-tip motion across different scenarios?

e Prediction of Completion Time: Can the dynamics model effectively

estimate the time required for task completion?

e Defect Detection Reliability: Does our failure detection method ac-

curately classify and identify different failure modes?

8.7.1 Experimental Setup and Test Parts

Experimental Setup: As discussed in Section 8.1, the primary objective
of our system is to operate in high-mix, low-volume (HMLV) manufactur-
ing settings. In such environments, fastening operations must accommodate
varied part orientations and multiple screw types, requiring a flexible and re-
liable screwdriving system. To evaluate our system’s capability under these

conditions, we design an experimental setup as illustrated in Fig. 8.9. The

185

Figure 8.9: The experimental setup serves as a testbed for data collection
for our dynamics model, failure detection model, and for performing
screw-driving trials. (a) Depict the panel at an orientation that can be
adjusted by two actuators on each end, (b) Depicts the in-hand camera’s
RGB images used to detect the colored screw-tip, and (c¢) Shows our trials
for failure-mode detection, with all the parts mounted on the panel at an
orientation

setup consists of an actuated mounting panel, where test parts can be se-
curely attached. The panel can be precisely oriented using two linear actua-
tors, enabling us to simulate real-world scenarios where screwdriving must be
performed in non-gravity-assisted configurations. By controlling these actua-
tors, we can systematically vary the panel’s orientation to assess the system’s

robustness across different inclinations.

Beyond serving as a testbed for screwdriving experiments, the proposed setup
also facilitates data collection for modeling screw-tip dynamics. By vary-
ing part orientations, we gather diverse motion trajectories, enabling us to
build and validate our physics-informed dynamics model. This setup ensures
a controlled yet adaptable environment for evaluating our system’s reliability,

scalability, and generalization across different fastening conditions.

Test Parts and Screw Types: To evaluate the robustness of our system
across different fastening scenarios, we conduct experiments using three screw
types, each varying in width and thread size: (1) M4 x 0.7 mm, (2) M5 x 0.8
mm and (3)M6 x 1.0 mm. All selected screws are pan head with a 20 mm

length. The choice of these screws is based on their compatibility with our

186

Figure 8.10: Left: The three Screw Types (M4, M5, and M6) used for the
trials and Right: The ten test parts selected for performing screwdriving
trials. Each of them has a different geometrical complexity, size, and shape,
and they are representative of different industrial settings (E.g., Electrical
Components, Automobile Parts, Refrigerator Parts, etc.). Furthermore
each of them have different screw types and at different orientations to
simulate a realistic HMLV scenario

187

screwdriving tool and their prevalence in HMLV manufacturing environments

[219].

For part selection, we focus on representative industrial components that re-
flect the diversity of products typically encountered in HMLV settings. The
test parts, illustrated in Fig. 8.10, exhibit variations in: (1) Geometrical com-
plexity - influencing the system’s ability to reach and perform screwdriving
operations. (2) Size categories - classified into small, medium, and large to
test scalability. (3) Threaded insert locations - affecting alignment and inser-
tion precision. All parts used in our experiments are scaled 3D-printed replicas
of real-world industrial components, allowing us to systematically test differ-
ent fastening conditions while maintaining controlled experimental variables.
This selection ensures a comprehensive evaluation of our system’s ability to

handle diverse part geometries, sizes, and insertion challenges.

8.7.2 Dynamics Model Evaluation

Data Collection: The dynamics model proposed in Section 8.5.1 character-
izes screw-tip motion as a function of compliance parameters. Therefore, our
goal during data collection is to obtain timestamped screw-tip motion data in
a fixed reference frame for different screw types and impedance control param-
eters, defined as: (1) Stiffness: IC = [ky, ky, k2, ko, kg, ky] and (2) Damping:
C = [cz,Cy, C2y Cas 3, Cy]. Additionally, to ensure that our model generalizes
well to changes in part orientation, we collect motion data at three different

part orientations of [30°,60°,90°].

Tracking the high-velocity motion of the screw tip during data collection is a
key challenge. To address this, we use a color-based marker on the screw-tip,
which is tracked using an in-hand RealSense D405 camera. This camera is well-

suited for close proximity (0.01-0.02 m) tracking with < 1 mm precision. The

188

Figure 8.11: The Predicted vs Ground truth for screw-tip motion. Here the
predictions are for all three screw types used in our study. The model
predicts velocity X. However, we also compute the cartesian trajectory of
the screw tip given an initial state. We can see all our predictions are
within the green zone, which signifies a 1 mm deviation for the screw tip
from the reference trajectory. Also, if we observe closely, our predicted
characteristics follow the ground truth characteristics of the screw-tip
motion. This underscores the robustness of SINDy in modeling such highly
nonlinear dynamics.

camera provides time-synchronized RGB and depth frames at 30 FPS, allowing
us to reconstruct the screw-tip trajectory with high accuracy. This data is then
post-processed to detect the screw-tip with a color-based filtering technique
(Refer Fig. 8.9). Specifically, we employ a simple HSV (hue-saturation-value)
based filter in OpenCV [220] to get the colored marker’s mask. Once we
have the mask, we approximate the centroid of this mask, which gives us
the position of the tip in the image frame. Since the depth frame is aligned,
we acquire the 7 value of the screw-tip. We then deproject the identified
pixels into Cartesian space using the camera’s intrinsic parameters, allowing
us to accurately determine the (x, y) position of the screw-tip in the camera
frame. This streamlined data collection process enables efficient large-scale
data acquisition across all three screw types. It is important to note that
the color marking on the screw-tip is only required during the data collection

phase for building the dynamics model. During execution, no visual markers

189

are necessary since the learned dynamics model can reliably predict the screw-

tip position in real time.

Our initial experiments revealed that fine-grained variations in impedance pa-
rameters K and C had minimal impact on screw-tip motion. To simplify the
analysis while preserving essential dynamics, we discretized impedance val-
ues into three categories: High (KCirans = [2500Nm], Kror = [250Nm/rad)),
Medium (Kirans = [1500Nm], Krot = [150Nm/rad]), and Low (Kians =
[B00NM], KCrot = [BONm/rad]). For each screw type and part orientation,
we conducted approximately 50 trials, with each trial lasting at least 20 sec-
onds. Given our system’s 30 FPS * recording rate, each trial generated around
600 frames (30 FPS x 20 sec). In total, we collected 30,000 samples, which
were used for model training and evaluation. The dataset was split 80:10:10
into training, validation, and testing sets. We employ appropriate subset sam-
pling to ensure that data points from different screw types and orientations

are uniformly represented across each of the dataset splits.

Model Performance: We train our model for 100 epochs using the loss
function defined in Eq. 8.2. Training is conducted on an NVIDIA GeForce
RTX 3060 GPU with an Intel Core i7 processor and 32GB of memory. We
employ the Adam optimizer with a batch size of 32 to ensure stable conver-
gence. The SINDy framework is implemented in PyTorch (code available at:
https://github.com/10glc-80m8/screwdriving-model-sindy-rcim). Fig.
8.11 presents our model’s performance in predicting screw-tip velocity, eval-
uated on a held-out test set of 3000 samples. The predicted velocities are
integrated to obtain the screw-tip position, which closely follows the ground
truth reference trajectory. Notably, our model maintains a prediction error

within 1 mm of the reference position, as highlighted by the green region in

*Note: 30 fps is due to depth data

190

https://github.com/l0g1c-80m8/screwdriving-model-sindy-rcim

Fig. 8.11, demonstrating its accuracy and reliability in capturing screw-tip

dynamics.

Model’s Dominant Terms: SINDy enforces model sparsity through sequen-
tial thresholding, where terms with coefficients below a predefined threshold
(10_4 in our case) are set to zero during training. This process ensures that
only a few dominant terms remain by the end of training, making the model
more interpretable and computationally efficient. In our case, the most signif-
icant terms were third-order polynomial terms, followed by sinusoidal compo-
nents, second-order polynomial terms, and a few constant terms. This enforced
sparsity enhances interpretability and improves computational efficiency, mak-
ing our model well-suited for real-time applications where high-frequency pre-

dictions are critical.

Baseline Comparison: To highlight the suitability of the SINDy model in
capturing the nonlinear dynamics of the screw tip, we benchmark its per-
formance against fully data-driven end-to-end models, such as Multi-Layer
Perceptrons (MLPs) and Long Short-Term Memory Networks (LSTMs) that

have been a popular choice for modeling system dynamics.

Model | Mean MSE (m) | Max MSE (m) | Std. Dev.
Ours 0.00035 0.0009 0.00025
LSTM 0.0653 0.1305 0.038
MLP 0.07 0.13 0.04

Table 8.1: Comparison of SINDy model with LSTM and MLP for
predicting screw-tip dynamics. These numbers are reported on a rollout of
the model for a time horizon of 5 seconds on our held-out testing
trajectories. What we observe is that even though the loss for LSTMs and
NNs is low, the divergence is significant, leading to poor predictions beyond
a couple of timesteps.

As shown by the error values in Table 8.1, SINDy significantly outperforms
MLP and LSTMs in predicting the screw-tip’s position. These findings are

consistent with previous results reported by the authors of the SINDy method

191

[204]. Additionally, we observe that for both MLP and LSTM, the loss drops
sharply early in the training cycle, suggesting that these models quickly con-
verge to suboptimal local minima. While their overall loss values appear low,
they fail to generate accurate predictions beyond a few timesteps, indicating
poor long-term generalization. This highlights the superior accuracy of SINDy
in modeling nonlinear screw-tip dynamics and also its ability to provide inter-
pretability, as it explicitly identifies the fundamental governing equations of

the system.

8.7.3 Predicting Time to Completion with Dynamics Model

Time to Insert Predicted vs. Ground Truth
]

w
U
.

w
o

N
U
.

g
(=]

=
o
.

Average Time (secs)
[
o

o
n
.

® Predicted
Ground Truth

o
(=)

00 05 10 15 20 25 30 35 40
Hole Offset (mm)

Figure 8.12: The Predicted vs Ground truth time to insertion for a given
offset of the screw-tip. This data is collected during our experiments when
we keep the screwdriving tool rpm at a fixed value of 600 rpm

The screw-tip dynamics model we developed provides insights into the level
of uncertainty a designed system can tolerate. For example, given a set of
screw types, we can estimate the maximum hole pose offset a system can
handle. Additionally, this model allows us to approximate the time required

for the screw tip to reach the hole’s attractor basin. Fig. 8.12 illustrates

192

these computations by reporting the average time for the screw tip to fall into
the hole’s attractor basin for various hole pose offsets. The mean insertion
time is computed across all trials for each offset. To determine this time from
experimental data, we analyze the wrench data, specifically monitoring the
f» force component and the z value of the robot’s end-effector. Once initial
contact is made, an increase in f, beyond a predefined threshold serves as
an indicator of successful engagement between the screw and the hole. Only

successful trials are considered in this analysis.

Using our dynamics model, we further predict the insertion time by randomly
sampling hole poses within an offset range n € [0,4] mm and computing the
average time it takes for the predicted screw-tip trajectory to pass through the
hole’s center. For a given screw tip diameter, we define successful insertion
when the tip overlaps with at least 90% of the hole’s area. This threshold en-
sures that the screw tip is sufficiently aligned with the hole’s attractor basin,
allowing it to fall in and engage reliably. As shown in Figure 8.12, our pre-
dictions align well with the ground truth insertion times. Notably, our model
exhibits a conservative bias, consistently overestimating the insertion time.
This insertion time acts as a benchmark for defining 7j,ser¢, the threshold
beyond which a reattempt is initiated to maintain efficient operation. The
average time required to complete a screwdriving operation once the screw tip
makes contact with the near plate i.e., the part surface is 5 seconds across all

our trials.

8.7.4 Failure Detection Results

The first four failure modes out of the five discussed in Section 8.6 exhibit
distinct state signatures based on wrench data. We collect data using the same

testbed described in Section 8.7.1 to train our decision tree model for failure

193

detection. However, generating failure cases presents a significant challenge,
as some failure modes-such as screw misalignment-occur infrequently under
nominal operating conditions. This scarcity of failure data makes the data
collection process inherently complex. To address this challenge, we leverage
the data augmentation method outlined in Section 8.6.1, enabling us to enrich

our dataset with realistic failure cases.

To systematically capture failure cases, we conduct 45 trials by intentionally
introducing positional offsets from the hole and varying the approach orien-
tation during screwdriving. This controlled experimental design ensures that
our training dataset encompasses a diverse range of failure modes. In these
45 trials, we also include successful screwdriving trials to help the failure de-
tection model learn normal operating conditions and distinguish failures from
nominal behavior. Importantly, all training data is collected exclusively on

the flat panel with threaded inserts described in Section 8.7.1.

Figure 8.13: Left: The confusion matrix for our validation dataset collected
on a flat panel with an Fl-score of 0.94. Right: We perform classification
on testing data collected on our 10 different parts, where our model
accurately classifies all modes of failure as shown in the figure

To evaluate the robustness and generalization of our decision tree model, we
conducted 50 screw-driving trials using 10 different 3D-printed parts, each

equipped with appropriate threaded inserts. It is crucial to highlight that while

194

the training data is collected on the flat panel with threaded inserts (Refer Fig.
8.9), all testing data is collected exclusively on these 3D-printed parts, allowing
us to assess the model’s ability to generalize to unseen geometries and assembly
conditions. The distribution of failure modes across the 45 training trials (On
flat Panel) and 50 testing trials (On 10 Parts) is summarized in Table 8.2.

Table 8.2: Distribution of Trials for Training and Testing. Training data is
collected on the flat panel with threaded inserts while testing is performed
by executing a screwdriving operation on 10 real-world parts.

Category Training Trials Testing Trials
Successful Completion (Nominal) 25 40
Operation-Stalled 5 4
Misaligned-Screw-in-Tool-Holder) 1
Screw-Detached-Without-Successful-Completion 5 3
Thread-Jamming) 2
Total 45 50

Table 8.3: Test Accuracy and Classification Report. Classes 0,1,2,3,4 are
the same as in the order they appear in the columns of Fig. 8.13

Class Precision Recall F1-Score Support
0 1.00 1.00 1.00 2

1 1.00 1.00 1.00 2

2 1.00 1.00 1.00 1

3 1.00 1.00 1.00 40

4 1.00 1.00 1.00 5
Accuracy 1.00 50
Macro Avg 1.00 1.00 1.00 50
Weighted Avg 1.00 1.00 1.00 50

We train our decision tree model using data from 45 training trials, along with
augmented data generated through the methodology outlined in Section 8.6.
Each data point undergoes five augmentation steps, resulting in an additional
225 training samples to enhance model robustness. We implement the decision
tree using scikit-learn [221], employing Gini impurity as the splitting criterion.
The dataset is split 80:20 for training and validation, with all augmented data

used exclusively for training.

195

The confusion matrix in Fig. 8.13 demonstrates that our model achieves per-
fect recall (1.0) for failure mode detection, ensuring that all defects are cor-
rectly classified. In validation, we observe an Fl-score of 0.94, with nominal
operation modes being the primary source of misclassification. These misclas-
sifications typically occur in cases where the screw was near a failure mode
but ultimately succeeded due to the robot’s active compliance compensating
for the offset. For qualitative insights, we provide videos illustrating such

scenarios at: https://sites.google.com/usc.edu/physicsinformedscrewdriving.

skew_tx <=0

.098
gini = 0.714

3,0,
class = 4

corr_fx_fy <=-0.028 corr_tx_ty <= -0.603
gini = 0.561 gini = 0.617

sam| 43
value = [0, 1, 4, 25, 13]
class = 3

energy_tz <= 1002.343
gini = 0.462 s.grml:sofl
valus:T'[,(I)esl_BI% g value = [0, 1, 0, 0, 0]
=10,1,3,0,
S class = 1

skew_ty <= 0.
gini = 0.375

class = 2

gini = 0.0 gini = 0.0 gini = 0.0
samples = 1 samples = 3 samples = 1
value =[0,0, 1,0, 0] value = [0, 0, 3, 0, 0] value = [0, 1,0, 0, 0]

class = class = 2 class =

Figure 8.14: The learned decision tree for the five classes (modes) of
operation. This figure is auto-generated using sci-kit learn graphviz
functionality and depicts how the decision tree is performing the splits.

Our model’s robustness is evident in the testing results, where it successfully
identified all failure cases, including nominal operation modes, without any
misclassifications (Refer Table 8.3). These trials were conducted across the
10 distinct parts shown in Fig. 8.9, simulating a realistic HMLV setting.
This scenario is representative of an HMLV setting, underscoring our failure
detection method’s applicability to such cases. The corresponding learned

decision tree model is visualized in Fig. 8.14.

196

https://sites.google.com/usc.edu/physicsinformedscrewdriving

Effect of Data Augmentation: To evaluate the impact of our augmen-
tation strategy, we conduct an ablation study where no data augmentation is
applied. Without augmentation, the validation F1-score drops significantly to
0.70, with a corresponding recall of 0.70, indicating a reduced ability to clas-
sify failure cases correctly. On the test set, the Fl-score declines to 0.94, with
recall decreasing to 0.92. These results underscore the importance of augmen-
tation, demonstrating that it enhances the model’s robustness by improving

its ability to distinguish failure modes more effectively.

8.8 Summary

This chapter investigated how compliance—both passive in the tool and active
in robot control—can be harnessed to achieve robust screwdriving under real-
world uncertainties, particularly in high-mix, low-volume (HMLV) settings
where expensive fixturing is infeasible. The key contributions and findings are

as follows:

e Autonomous compliant screwdriving system: A mobile robotic cell was
developed that combines a passively compliant rotary tool with Cartesian
impedance control, along with vision and force sensing, to perform au-

tonomous screwdriving on varied parts without relying on rigid fixtures.

e Physics-informed dynamics modeling via SINDy: Sparse Identification of
Nonlinear Dynamics (SINDy) was used to learn an interpretable, data-
efficient model of the screw-tip behavior as a function of compliance pa-
rameters and robot orientation. This model outperformed end-to-end
neural network approaches and enabled accurate predictions of insertion

dynamics across a range of hole pose offsets.

e Data-driven process planning: By leveraging the SINDy model to esti-

mate time-to-insertion, the system can automatically trigger reattempts

197

or escalate for intervention when a screw fails to insert within an informed

time threshold—thereby closing the loop between prediction and action.

e Robust decision-tree-based failure detection: A decision-tree framework
was introduced to classify five distinct failure modes—four force-based
anomalies plus a time-elapsed failure, achieving perfect precision and re-
call on test data. A targeted data-augmentation strategy further boosted

detection performance.

e Extensive real-world validation: Trials on ten industrial parts and three
screw sizes (M4, M5, M6) demonstrated 100% success under hole pose
uncertainties up to £4 mm/+3°, with average insertion times around five
seconds. These results confirm the system’s adaptability and reliability

in practical HMLV environments.

Together, these results underscore the critical role of compliance modeling
and physics-informed learning in enabling reliable robotic manipulation un-
der uncertainty. By integrating dynamic simulation, interpretable modeling,
and real-time feedback, the framework advances the state of the art in au-
tonomous screwdriving and offers a blueprint for other precision tasks involv-
ing deformable or compliant elements. This chapter’s insights on compliance,
physics-informed modeling, and failure resilience feed directly into the overar-
ching dissertation goal of building intelligent, explainable, and robust robotic

systems for deformable/compliant object manipulation.

198

Chapter 9

Bi-manual Manipulation for Shell-like Deformable

Objects

9.1 Introduction

Deformable object manipulation has traditionally focused on 1D structures
like ropes and cables, or 2D structures like cloths and sheets, as discussed
in previous chapters. While these settings have offered essential insights into
planning and control for deformable materials, the evolving landscape of logis-
tics, e-commerce, and small-batch manufacturing is introducing new classes of
deformable objects that demand a different perspective. In particular, shell-
like deformable packages—such as polybags containing internal objects—are
becoming increasingly prevalent. These packages present unique challenges:
unlike simple sheets or ropes, they consist of two thin surfaces enclosing a
freely moving internal mass, producing complex, coupled deformation behav-
iors. Depending on the properties of the external material and the contained
object, these packages can exhibit unpredictable bending, sagging, and folding
patterns during handling. Despite their growing industrial importance, such
shell-like deformable objects remain understudied in the robotics community,
creating a critical gap between current research and real-world application

needs.

199

Figure 9.1: (a)The deformable packages studied in this work. (b)The
proposed bimanual cell. The in-bin robot stays inside the bin during the
packing process, while the pick-place robot transports and places packages
inside the bin.

One domain where these challenges manifest acutely is bin-packing in ware-
house logistics. Efficient bin-packing is essential for optimizing space, minimiz-
ing costs, and meeting the growing demands of rapid fulfillment. While rigid
packages have been extensively studied with conventional packing strategies
[222|, deformable packages introduce a different class of problems: (1) Their
deformation depends heavily on internal contents, making shape prediction
unreliable, (2) Visual inspection alone cannot fully infer their physical prop-
erties, and (3) Traditional packing methods, which assume rigid or uniformly

stackable items [223], often fail when applied to such deformable items.

Fig. 9.1 illustrates the class of deformable packages addressed in this chapter.
Unlike rigid boxes, these packages demand adaptive handling strategies that
can stabilize and manipulate their pliable structure during packing. In pre-
liminary investigations, we observed that humans naturally employ bi-manual

strategies when packing such deformable packages: one hand stabilizes the

200

partially packed contents (providing local structure and control), while the
other places new items (exploiting open space and compressibility). Bimanual
manipulation becomes particularly important when dealing with deformable
objects for two reasons: (1) Stabilization and active control are needed si-
multaneously to prevent undesirable deformations during placement, and (2)
Coordinated force application across two points allows for gentle correction of

object shapes without causing damage.

However, enabling bimanual robotic systems introduces significant new chal-
lenges. Coordinating two arms demands precise synchronization, particularly
under conditions of uncertainty where object behavior may be unpredictable.
Beyond synchronization, reasoning about the coupled effects of grasping and
sweeping actions becomes complex, as internal and external deformations of
the object are deeply interdependent. Effective planning must therefore navi-
gate a delicate balance—optimizing task objectives, such as maximizing pack-
ing density, while simultaneously respecting physical constraints, such as pre-

venting package rupture or minimizing excessive force application.

Drawing inspiration from these human strategies, this chapter presents a bi-
manual robotic system that mirrors this dual-role principle. One manipulator
is responsible for stabilizing and adjusting package positions within the bin,
while the second manipulator performs suction-based pick-and-place opera-
tions for incoming packages. Unlike rigid bin-packing tasks, where simple
heuristics are often sufficient, packing deformable objects demands a more
adaptive and responsive approach. Heuristic-driven strategies frequently fail
in these settings, especially when faced with the dynamic, unpredictable de-

formations that arise during real-world handling (see Section 9.7.3).

To tackle this complexity, we develop a learning-based action prediction frame-

work that jointly reasons about both arms’ actions to maximize a bin-packing

201

efficiency score. The problem is further complicated by the fact that bin-
packing must operate in an online fashion, where packages arrive sequen-
tially without prior knowledge of their characteristics [224]. Moreover, purely
simulation-trained models often suffer from sim-to-real transfer gaps [225, 226],
limiting their effectiveness when deployed in physical systems. Extensive real-
world data collection is also impractical due to the vast diversity of package

types encountered in operational warehouses.

To overcome these challenges, this work adopts a hybrid learning strategy that
leverages the strengths of both simulation and real-world experimentation. A
simulation environment built in MuJoCo is first used to pre-train the model on
a broad range of deformable package interactions, imparting strong physical
priors into the learning process. The model is then fine-tuned using a small
but carefully curated set of real-world trials to adjust for sim-to-real discrep-
ancies. Finally, an optimizer-in-the-loop is integrated into the framework to
predict action parameters that directly maximize packing efficiency without
requiring perfect simulation fidelity. This combined approach allows the sys-
tem to generalize across a wide range of packages while maintaining robust

real-world performance.

The key contributions of this chapter are summarized as follows:

e Development of a bimanual robotic system capable of securely and ef-
ficiently packing deformable packages, validated with real-world experi-

ments across 18 distinct objects.

e A parameterized action prediction framework that learns to predict bin-
packing efficiency, achieving a mean squared error (MSE) of 0.003 across

100 real-world trials.

e A physics-informed simulation environment that models shell-like de-

formable object interactions in MuJoCo, enabling scalable pre-training.

202

By extending the study of deformable object manipulation beyond classical
sheets and ropes to more complex, deformable packages, this work bridges an
important gap between academic research and the practical challenges faced
in modern warehouse automation. Through careful integration of bimanual
control, learning, and simulation, we take an essential step toward deploying

intelligent, resilient robotic systems in real-world logistics environments.

9.2 Related Work

Bimanual object manipulation: Bimanual robotic cells have been exten-
sively studied for handling various objects, including rigid, deformable, ar-
ticulated, etc [227, 228|. Due to their inherent ability to mimic human ma-
nipulation skills, such robotic cells are preferred for complex manipulation
tasks. However, they present motion and task planning challenges due to
their increased complexity [229]. In [230], the authors study the bimanual
manipulation of garments, where the objective is to fold clothes. Bimanual
manipulation has also been applied in medical robotics, where intricate dex-
trous manipulation capabilities are essential [231]. Prior research often em-
ploys a primitive-based approach, predicting parameters for specific movement

primitives [232], but none have addressed deformable packages.

Bin-Packing: Bin-packing in robotics has been a long-standing problem
[233]. Traditionally, bin-packing refers to the problem of maximizing the num-
ber of objects packed into a bin [234]. Our focus lies in manipulation planning
within this context, specifically addressing the online bin-packing problem of
object manipulation and placement [222]. Past research has predominantly
examined bin packing for homogeneous, rigid, regular-shaped objects [235—
237]. However, the challenge of packing deformable objects remains largely

unexplored [238, 239|.

203

Deformable object manipulation: Recently, deformable object manipu-
lation has gained significant interest [227|. In [240|, the authors propose a
system for manipulating deformable packages. However, the focus is on ef-
ficiently picking packages from a pile rather than stowing them in a bin. In
[226], the authors model object interactions and demonstrate the robotic stow-
ing task with a single robot arm. However, they focus on rigid objects easily
perceived by an image or point cloud rather than objects hidden inside pack-
ages. Most of the other work mainly focuses on manipulating objects such as
sheets [3], garments, elastic cables [228], etc. In [241, 242|, the authors study
the bagging task but focus on manipulating the deformable bag for packing.
Our work differs in its emphasis by modeling the impact of robot actions on

bin-packing efficiency rather than inter-object interaction.

9.3 Bimanual Robot Setup for Packaging

Fig. 9.2 illustrates the deformable package bin-packing task facilitated by the
proposed bimanual setup. This process involves picking a package, ensuring
its safe transportation, and appropriately positioning it within the bin. The
overarching goal is to optimize packing efficiency and process time. A crucial
consideration for achieving high efficiency in this task lies in maintaining the
stability of packages within the bin; this entails ensuring that in-bin packages
remain upright relative to the bin’s base and that new packages are safely
deposited at their intended locations. Packages need to be upright and snugly
packed due to the downstream requirements of the bin that would typically
traverse across a large fulfillment center on a mobile platform or conveyor.
Other packing strategies can lead to a potential risk of the package being

dislodged from the bin during transportation.

204

Figure 9.2: Overview of the entire pick-and-place pipeline with the
bimanual robotic cell.

205

Our setup (Refer Fig. 9.2) comprises two KUKA LBR IIWA robots equipped
with joint torque sensors capable of operating under impedance control mode.
The in-bin robot operates with perpetual compliance, while the pick-place
robot exhibits compliance only during picking. The compliance of the pick-
place robot is enabled to compute package characteristics online (Refer Section.
9.6). The in-bin robot is retrofitted with a rigid paddle-shaped tool to ma-
nipulate the in-bin packages, while the pick-place robot has a suction-based
gripper for safe picking and transporting packages. In the context of bin-
packing, both robots perform certain action primitives that enable the task
objective. A RealSense D415 camera provides RGB-D image observations of

the bin to extract a comprehensive bin-state representation.

9.4 Problem Formulation

The objective of the bin packing problem is to optimize packing efficiency.
Thus, given an observation O of the bin state S at a given instance, the goal
is to compute robot actions a! and a? for the pick and place robot (Robot 1)
and the in-bin robot (Robot 2), respectively. We assume that packages are
handled one at a time in the order of arrival, following an online approach for

bin packing.

Let a; = (a%,a}) € A be the action the bimanual system executes at state S
for packing the it" package, where i € [1,N] and N is the total number of
packages. We also define a scoring function 7(-,) that computes the packing
efficiency of a bin, given the observation of the bin state and characteristics
of the package that is queued to be placed in the bin. Thus, the bin packing

problem can be represented as solving the following program:

max (O, p;) (9.1)

3

206

Here, af is the optimal action that maximizes the packing score 7(-,-) and
p; are the characteristics of the i*" package that is going to be placed in the
bin. The actions here are robot end-effector poses for both the robots with
respect to a base frame of reference. Assuming that the bin dimensions and
position are available, the actions for the robots can be precisely defined as
at = (x1,51), and a’ = (22, 22, B2). Here, x1 & x2 are the x movement of the
corresponding robots, zo is the z movement of the robot-2, 81 & 9 are y euler
angles w.r.t a nominal frame Tpqchage € SE(4). We fix the other degrees of
freedom due to their redundancy in influencing 7(-,-) (Refer Section 9.6.1 for
details). Additionally, we presume access to a time-optimal trajectory planner
with collision-checking capabilities to facilitate the minimization of process

time.

9.5 Approach

9.5.1 Packaging Pipeline as a Finite State Machine (FSM)

Our bimanual bin-packing pipeline can be represented as an FSM to facilitate
control and task planning (Refer Fig. 9.3). Upon the arrival of a new package,
the system transitions from pick pose detection to successful placement in the
bin. The perception module provides the system with image and point cloud
observations to compute nominal pick and drop locations. However, relying
solely on perception module data can lead to failures due to calibration issues
and the deformable nature of the packages. Hence, developing a strategy for
learning the optimal actions for both robots involved in the bin-packing process

is crucial. We outline the key states governing task completion as follows.

Pick State: The system estimates the pick pose of the package using the

RGB-D image from the overhead camera. We generate the segmentation

207

Figure 9.3: The pick and place pipeline for bin-packing is represented as a
simplified FSM due to its sequential nature. Such representation guides the
system’s high-level actions.

208

Figure 9.4: Left: Our entire model and real-time optimization pipeline to
compute optimal actions that maximize the packing score. Packing score
prediction functions are modeled with a Multi-Layer Perceptron (MLP).
Right: The packing score representation and bin state definition.
Definitions remain the same for computing both packing score 1 and
packing score 2

mask of the package using YOLOv8 on the RGB image. Subsequently, an
oriented bounding box is generated for the observed point cloud. Since pack-
ages are placed on the table, only yaw rotation is considered for the pick pose.
The trajectory planner computes a feasible trajectory to the pre-pick pose.
The pick-place robot moves linearly in the z-direction, interacting with the
package under compliance control mode while recording external forces on its
end-effector. The stiffness (K) and thickness of the package are determined
using the recorded F, on the robot’s flange and the z-deviation (AZ) from its

commanded goal pose.

Transport State: After picking up the package, the robot receives a drop
location from the system. Subsequently, the transport robot follows a time-
optimal trajectory to safely deliver the package, considering maximum velocity
and acceleration constraints to prevent mid-trajectory drops. Force-torque
data is recorded during this motion to determine the package’s mass. This
enables the characterization of package attributes P, = (m,l,b, h, K), where
m is the mass in kgs, [, b, h are dimensions in meters, and K is stiffness in

N/m.

209

Bin-preparation State: The in-bin robot ensures package stability and up-
right positioning within the bin. Once the bin is stable, the system provides
the P; and current state observation for the in-bin robot to compute the opti-
mal action a;. We observe that the height at which the paddle is placed while

sweeping plays a crucial role for a successful sweep.

Package Drop State: Once both the robots are at their intended locations,
the suction pressure is halted, allowing the package to drop into the available
space. Subsequently, the in-bin robot performs a sweep motion under com-
pliance control mode. During sweeping, the paddle aligns with the package
while maintaining the z height computed in as. Sweeping is repeated until the

packages are stable. This process iterates until the bin reaches full capacity.

9.5.2 Learning Packing Score Function

Defining a metric to quantify bin-packing quality can be approached in several
ways. Our proposed bin-packing action prediction framework maintains flexi-
bility in accommodating various metric definitions. However, for our specific
downstream application, we required a metric tailored to our unique setup.
We recommend that practitioners redefine the packing score metric to align
with the specifications of their individual cells. Given our bimanual setup
and the deformable nature of packages, we had to design a packing score that
captures the influence of both robots on packing efficiency. Thus, we define
packing score as depicted in Fig. 9.4. The ~; and 5 components promote bin
stability by encouraging package configurations aligned with the last package
in the bin. The 3 and 74 components ensure that the packing fraction of
the bin is maximized and the configurations that disrupt the current bin state
are penalized accordingly. Moreover, we define packing scores using the same

elements for the pick-place robot and the in-bin robot. Throughout training

210

data collection, these scores are computed using the point cloud observations
(Refer Section 9.6.1), and our objective is to predict these scores for a given

action set at a nominal bin state.

One potential approach involves predicting these scores for given actions an-
alytically. However, due to the deformable nature of packages, predicting
package dynamics using finite element methods or analytical approaches poses
significant challenges [227]. Thus, we aim to learn a model to predict the de-
fined packing score given a new package and the corresponding robot actions
for a given bin configuration. This model serves as the function approximator
for n(.,.). Our empirical investigations revealed that the final packing score of
the bin for a package placement is influenced by the sequence of actions corre-
sponding to the drop of the package (robot-1 actions) and the sweeping of the
package (robot-2 actions). Suboptimal package placements during the suction
robot’s package-dropping phase hinder the in-bin robot’s ability to achieve a

high packing score.

Consequently, the model architecture for predicting the packing score must
account for this sequential dependence. As illustrated in Fig. 9.4, our proposed
architecture addresses this challenge by simultaneously optimizing the packing
scores of both robots. Specifically, we feed the packing score of the bin after
the transport robot’s actions 77 into the network responsible for predicting
the packing score after the in-bin robot’s actions 7y, ensuring coordinated

optimization.

The model comprises two multi-layer perceptron networks, MLP 1 and MLP
2 (Refer Fig. 9.4), predicting the corresponding packing score. The input
to MLP 1 is the robot actions a; and as, as well as the bin-state defined by
the last package’s orientation with respect to the bin’s vertical face and the

distance of the package’s base from the bin’s origin (Refer Fig. 9.4). The

211

bin state is computed using point-cloud observation of the bin (Refer Section
9.6.1 for details). We also tried using PointNet [243| architecture as a state
encoder. However, our minimalist state representation gave us satisfactory
performance (Refer Section 9.7). Moreover, this approach aids in reducing the
overall model complexity, thereby improving the parsing time and memory
footprint necessary for real-time execution. The MLP 2 takes the output of
MLP 1, package characteristics, and the robot-2 actions as. This design choice
is motivated by the observation that 79 is conditioned only on 7; and robot-2
actions ao. Here, 11 serves as a surrogate for the bin-state post package drop
is complete. The model is trained by optimizing the following loss function

with L2-regularization:

2
‘Cpacking(w) = Z Aiﬁ;ﬂacking + >‘3| |UJH% (92>
i=1
Where 5;; acking (Refer Eq. 9.3) is the Huber loss that motivates reducing mean

as well as median error and is suitable for the packing score’s data distribution,

i sy =) if |(y' —§")] <
packing —)))) (93)
8 ((y' = 9') — 397) otherwise
Here, ﬁzlmckm g and ﬁfmckm , are the loss values for both robots’ packing scores,

A1, A2, A3 are regularization hyperparameters, while ! & 62 are thresholds at

which change gets triggered between L1 & L2 loss.

9.5.3 Learning Optimal Robot Actions

The model described in Section. 9.5.2 predicts the corresponding packing
scores for the actions executed by robot 1 and robot 2, given the bin and

package state. Our objective is to solve the inverse problem, i.e., to compute

212

the actions that can maximize both the packing scores. In order to achieve
this, we devise an optimization loop in conjunction with the MLP model (Refer
Fig. 9.4). The objective of this optimizer is to maximize the weighted mean

of score 1 and score 2.

For such an optimization scheme to be viable in real-time execution, a crucial
design consideration is the convergence time. Furthermore, the loss landscape
for our score prediction model (Refer Eq. 9.3) can be saddled with several lo-
cal minima, leading to suboptimal action computations. Thus, we opt for the
parallel basin-hopping method, a standard global optimization routine widely
used for such problems [244]. This method reinstates numerous local opti-
mizers with initial conditions in the vicinity of the current best local minima.
The local optimizers use a gradient-based optimization scheme based on the
L-BFGS-B algorithm, which supports bounded-constrained optimization. The
bounds are placed on the domain of the action space. Thus, in this manner,
we overcome the problem of being stranded in suboptimal local minima, and
parallel basin-hopping ensures convergence can be achieved in the minimum

possible time for it to be suitable for real-time deployment.

9.6 Experiments

9.6.1 Real-World Experiments

We collect the data necessary to train the packing score prediction model.
18 different types of objects (6 Rigid, 12 Deformable) are packed inside an
LPDE polyethylene-based padded package (Refer Fig. 9.5a). We aim to col-
lect data for packing scores for a given bin state and a package. Thus, we
initially used 12 packages (9 Deformable + 3 Rigid) for training data collec-

tion. We uniformly generate a sequence of packages of different thicknesses

213

(a) Sample objects packed inside the (b) Simulation data generation in MuJoCo
package in real data collection

Figure 9.5: Simulated and real data generation for model training. We
replicate the setup in MuJoCo with deformable packages

and execute the bin-packing pipeline described in Section. 9.5.1. During exe-
cution, we uniformly sample the values for actions a; (x; : U(—0.02,0.02) m,
B1 : U(0.0,20.0) degrees) and ay (z2 : U(0.0,0.03) m, 2z : U(—0.07,0.05) m
B2 : U(0.0,20.0) degrees) from the bin state. Additionally, we collect the raw
point cloud of the bin to compute the bin state. The cropped point cloud data
comprises the container, paddle, and package stacks. The force data collected
while package pickup is used to compute the package stiffness and thickness
using the impedance control parameters *. In this manner, we generate about
1000 bin-packing scenarios and compute corresponding packing scores. The
data collection is executed in a self-supervised manner, thus obviating the need

for expensive human labeling.

Generating Bin State Data and Ground Truth Packing Scores: To
compute the bin state, we collect the raw point cloud of the bin. We then em-
ploy a density-based spatial clustering algorithm (DBSCAN) [245] and plane

patch detection [246] to extract the position and orientation of the package

*Refer to our project website for implementation details: https://sites.google.com/usc.edu/bimanual-
binpacking

214

https://sites.google.com/usc.edu/bimanual-binpacking/
https://sites.google.com/usc.edu/bimanual-binpacking/

stack. Once the suction robot drops a new package, to segregate this new pack-

age from the previous package stack and container, we perform a difference

operation between the old and newly captured point cloud and subsequently

perform DBSCAN and plane patch detection for computing the pose of the

new package. The same process is repeated after the bin-sweep operation is

completed. Then, using these point clouds (refer to Fig. 9.6), we compute the

packing scores as per definitions in Fig. 9.4.

Dataset

Size

(Real Data)

MSE]

MAE |

Max Error]

Trained on
Sim + Real

Trained on Real Only

Trained on
Sim + Real

Trained on Real Only

Trained
Sim 4 Real

Trained on Real Only

Score 1 | Score 2

Score 1

Score 2

Score 1 | Score 2 | Score 1

Score 2

Score 1

Score 2

Score 1

Score 2

Training

695

0.0025 | 0.0026

0.0042

0.005

0.012 0.062

0.036

0.085

0.040

0.070

0.102

0.110

Validation

100

0.0032 | 0.0035

0.0067

0.0081

0.063 0.062

0.096

0.098

0.161

0.182

0.325

0.356

Test

100

0.0033 | 0.0034

0.0075

0.0081

0.065 0.076

0.098

0.101

0.165

0.191

0.372

0.395

Table 9.1: The packing score prediction model’s performance, evaluated
with 5-fold cross-validation, shows that the model pre-trained on
simulation data outperforms others across all metrics, reducing the

maximum error by 46-48%

Figure 9.6: The raw point cloud and the corresponding processed point

clouds used for bin state and packing score computation. Process for
computing packing score 1 & 2 is the same

215

9.6.2 Simulation Experiments

In simulation, we replicate the data collection strategy adopted in the previous
section. We use MuJoCo 3.0 [247] and model each package as a flex object.
We generate instances of packages with varying thicknesses (U(0.005,0.07)m)
and stiffnesses (U(10,8000) N/m) to ensure that the dataset represents the
type of objects that can be encountered during real-world execution. In the
simulation, the key is to generate diverse data; thus, we sample different bin
states ranging from empty to almost full bins. The paddle-shaped tool and
the bin are modeled as rigid objects. We generate 20000 simulation scenarios

to pre-train the packing score prediction model (refer to Fig. 9.5a).

9.7 Results

9.7.1 Failure State Estimation and Packing Score Predictions

on Real Data

Failure State Estimation: Prior to training a model to predict a packing
score for a given state and action, we train a state estimation model that
classifies a given state action pair into two categories : (1) feasible and (2) in-
feasible (Refer Fig. 9.7). Infeasible states are those with a packing score below
0.4. Our observations indicate that packing scores below 0.4 typically result
in the system’s inability to recover to a high packing score after the bin sweep,
a trend consistent across both simulation and real-world data. Therefore, we
focus on predicting packing scores only for feasible states. We identified 1138
infeasible cases out of 20,000 in simulation data and 105 infeasible cases out
of 1000 in real-world data. We label these cases as infeasible. Consequently,

we train the state estimation model with simulation and real datasets. The

216

training dataset comprises feasible states (Real: 695 + Sim: 18,862) and in-
feasible states (Real: 55 + Sim: 1138), with the model trained using binary
cross-entropy loss. We evaluated the model’s performance on test data con-
sisting of 200 feasible and 50 infeasible real-world cases. The model performs

classification with an F1 score of 0.99 (Precision: 0.995 and Recall: 0.987).

Packing Score Prediction: Our packing score prediction model results are
illustrated in Table. 9.1. We train the model on a combination of real and
simulated data. Initially, we pre-train the model with 18862 simulation data
points. This model is then fine-tuned on a batch of 695 real-world data points.
Model 1 and Model 2 (Refer Fig. 9.4) consist of 3 fully connected layers with
ReL U activations. We learn the model parameters using an Adam-W optimizer
with a fixed learning rate of 0.002 and batch size of 30. To demonstrate the
impact of simulation, we present the results by training two model instances:
(1) A model pre-trained on simulation data and then fine-tuned on real data
and (2) A model only trained on 695 real data points. Table. 9.1 depicts that

simulation data significantly boosts model performance for all metrics.

Our mean squared error (MSE) values of 0.0033 and 0.0034 for packing scores
1 and 2 suggest a strong fit to the test data. These low MSE values indicate
that our model’s predictions closely align with the observed packing scores.
Cases with error > 0.15 occur infrequently, specifically in only 4 cases out of
100. Notably, these instances typically occur at the fringe, with packing scores
between 0.4 and 0.5. All the models are trained on a system configured with

an Intel i7 4.9 GHz and equipped with NVIDIA GeForce RTX 3060.

217

Figure 9.7: Intermediate dropping and sweeping performances of the
system achieving high-quality bins. We also demonstrate the bin packing
instances when scores were lower than 0.8.

MSE | MAE | Max Error |
Latency
No. of Trials
Score 1 | Score 2 | Score 1 | Score 2 | Score 1 | Score 2 | (ms)|
20 0.0019 0.0021 0.033 0.038 0.108 0.107 226

Table 9.2: The performance of the action prediction framework in

predicting bin packing score during online execution. The mean packing

score during these trials was 0.88 for score 1 and 0.91 for score 2

218

9.7.2 Action Prediction Performance

To assess the effectiveness of the optimizer in predicting optimal actions, we
conducted real-world trials involving 20 distinct bin states not previously en-
countered in our data collection. These trials utilized the remaining six pack-
ages from our dataset, ensuring a comprehensive evaluation. Subsequently,
we executed the actions recommended by the action prediction framework for

these novel bin states and recorded the resulting packing scores.

Table 9.2 presents a comparative analysis between the observed packing scores
and those predicted by our framework. Our findings illustrate the optimizer’s
ability to effectively predict actions that maximize packing scores. Moreover,
the calculated Mean Squared Error (MSE), Mean Absolute Error (MAE), and
maximum error values between the predicted and observed packing scores
underscore the robustness of our system. The max errors of 0.108 and 0.107
occurred in scenarios where the bin approached full capacity. The average bin
packing scores during these trials were 0.88 for score 1 and 0.91 for score 2,
reaffirming the efficacy of our system in consistently producing well-packed

bins.

Additionally, our framework exhibits computation efficiency, with an average
processing time of 226 milliseconds for computing actions for a given state.
This time encompasses bin state computation, model parsing, and optimizer
convergence, indicating the viability of our model for real-time execution and

its applicability in practical scenarios.

9.7.3 Bin-packing Performance:

To demonstrate the need to learn optimal actions for our bimanual setup,
we benchmarked our method against two approaches: (1) Random and (2)

Heuristic-based. In random trials, we uniformly sample values for actions

219

No of | Type of Avg. Avg. Success
Trials Trial Score 1 1 | Score 2 1 | Rate 1
ours 0.88 0.91 20/20
20 heuristic 0.76 0.82 16,/20
random 0.62 0.66 13/20

Table 9.3: Our approach outperforms random and heuristic-based
approaches with a high final packing score of 0.91

similar to Section. 9.6.1 and record the bin-packing score and whether the
package placement was successful or not. For the heuristic approach, we use
package thickness and stiffness as parameters to decide the action values and

assume that package deformation plays no role in packing. As shown in Table

9.3.

9.7.4 Sensitivity Analysis:

Number of | Perturbation Mean Change Max Change
Samples in Actions in Packing Score | in Packing Score
10 % 1.5 % 2.6%
20 % 2.3 % 4.1 %
100 30 % 4.6 % 10.2 %
40 % 7.4 % 17.6 %
50 % 18.2 % 24.5 %
>50 % 25.3 % 34.7%

Table 9.4: Effect of adding noise in the actions computed by the optimizer.
Here, a 50% change in action values corresponds to 2 cms in position values

and 107 in orientation values, respectively.

The optimizer plays a pivotal role in predicting actions that maximize packing
scores. Its effectiveness hinges on whether the loss landscape for action vs.
packing score at a given state warrants such optimization. Indeed, if a random
selection of actions consistently yields high packing scores, the necessity for

an optimizer diminishes.

analysis of the optimizer.

To test this hypothesis, we conduct a sensitivity

220

In this analysis, we initially compute the optimal actions that maximize the
packing score for the bin states in our test data. Subsequently, we system-
atically perturbed the action space by random increments and observed the
corresponding effects on packing scores. Table 9.4 presents our findings, reveal-
ing an exponential decrease in packing scores when optimal actions computed
by the optimizer were randomly perturbed. Notably, instances where action
values were perturbed by 50% resulted in an average packing score decrease
of 18.2%. These results underscore the indispensability of optimization in our
problem domain. They suggest that arbitrary action selections are unlikely
to yield high packing scores consistently, reaffirming the critical role of the

optimizer in maximizing packing efficiency.

9.7.5 Simulation Results:

To demonstrate the fidelity of our simulation, we recreate the scenarios from
our real-world dataset and conduct a qualitative and quantitative evaluation
of the resulting discrepancies. Fig. 9.8 illustrates a few such cases for the bin
state and action pairs that either lead to failure conditions that are crucial
to recognize if we want to rely on the simulation data to provide us a robust
enough representation of reality and a high-quality inductive bias for model
training. Our simulation effectively replicates failure cases, including scenarios
where (1) dropped packages disrupt in-bin arrangements, (2) the dropped
package lands on top of other packages by colliding with the paddle tool,
and (3) the bin sweeps by the in-bin robot that led to instability in the bin.
These cases are the primary reasons for cases with low packing scores, and the
ability of our simulation to replicate these scenarios underscores its proficiency

in generating high-quality data.

221

Figure 9.8: The comparison between the real world and the corresponding
simulation scenario, depicting the effectiveness of simulation to capture the
essence of package characteristics

222

Additionally, we simulate the real-world scenarios in our test dataset. We
compute the corresponding values for both the packing scores and compare
them with the true values. The low MSE values in the simulated vs. true
packing scores error (Refer Table. 9.5) demonstrate that simulation produces
data that can provide a good inductive bias for pre-training the model. The
max errors were 0.33 for Score 1 and 0.32 for Score 2, observed in cases with
lower packing scores (<0.5). However, in these cases, the values of packing
scores in the simulation were lower than the actual observed ones, thus making

the sim data reflective of failures.

No. of MSE | MAE |
Datapoints | Score 1 | Score 2 | Score 1 | Score 2
1000 0.014 0.013 0.096 0.09

Table 9.5: Performance of Sim vs Real in computing packing scores by
recreating scenarios encountered in test data. The errors >0.2 occur in
only 0.5% cases. However, all the failure cases are captured robustly with a
low error.

9.8 Summary

This chapter introduced a compositional learning framework for addressing
the emerging challenges of manipulating shell-like deformable packages in bin-
packing operations, a problem increasingly relevant in robotic warehousing
and fulfillment industries. By developing a bimanual robotic cell and an action
prediction methodology that jointly reasons about coordinated grasping and
sweeping actions, we demonstrated how robots can achieve optimized packing

efficiency even when dealing with complex, flexible packages.

A key contribution of this work lies in the integration of simulated and real-

world data within a self-supervised learning framework, enabling robust policy

223

training without requiring extensive manual labeling. Furthermore, the pro-
posed framework incorporates physics-based priors in the form of the stiffness
of the packages being handled. The developed simulation pipeline accurately
captures the interaction dynamics between deformable shells within the bin,
facilitating effective transfer to physical deployments. Our experimental re-
sults highlight the system’s ability to generalize across a variety of packages

and demonstrate strong real-world performance.

Overall, this work advances the frontier of robotic manipulation for complex
deformable objects, providing a foundation for scalable, reliable, and efficient

automation of shell-like package handling tasks.

224

Chapter 10

Anomaly and Failure Detection for Deformable

Objects

10.1 Introduction

In robotic manipulation tasks, failures are inevitable. Most of the learned poli-
cies we discussed in previous chapters are susceptible to failures due to mod-
eling errors (sim-to-real gap), errors in controllers, perception errors, changes
in the environment (lack of strong inductive bias), etc. In previous chapters,
we studied how to detect and overcome perception errors, highlighting the
potential of modern learning frameworks. Deep learning-based models can be
powerful in detecting failure modes. Nonetheless, the reliance of these models
on extensive datasets necessitates meticulous data collection and annotation
procedures. Reliable failure detection is a cornerstone of any robust robotic
manipulation system, but it is especially challenging when the manipulated
objects themselves are deformable. Unlike rigid parts, where defects can often
be characterized by simple geometric deviations, deformable materials exhibit
a wide variety of irregular, context-dependent failure modes. In sheet-handling
applications, such as composite layup or flexible packaging, defects like wrin-
kles and folds can appear in countless shapes, sizes, and orientations, making

it difficult to define clear, universal criteria for what constitutes a “failure.”

225

Detecting these defects early, before they propagate into more serious errors
or lead to scrapped parts, is critical in high-performance industrial processes
[248-252]. In high-precision manufacturing domains such as aerospace, even
minor wrinkles during composite layup can undermine structural integrity,
while in electronics or consumer goods assembly, fabric folds or surface defects
can disrupt downstream operations. Early detection of defect onset—rather
than relying on post-hoc identification—enables timely corrective actions, re-
ducing material waste, rework, and production delays. As a result, robust
defect detection has emerged as a critical enabler for the large-scale adoption

of advanced robotic systems in modern manufacturing environments.

Several defect detection applications in manufacturing employ traditional vision-
based methods [253-255]. In such applications, a high-resolution camera cap-
tures images of the part. These images are then processed with conventional
image segmentation methods that are based on pixel filtering and image gra-
dients. Such methods are highly sensitive to external factors such as lighting
conditions, camera intrinsics, anisotropic interactions of the components, etc.
These traditional methods are predominantly used for defect detection related
to dimensional errors. However, another class of processes exists where com-
ponents might be deformable (e.g., prepreg composite layup), where methods
that depend on well-defined geometrical features of the part might be unable
to detect defects. Moreover, these conventional techniques require fine-tuning
of certain parameters to ensure robustness and repeatability in detection. De-
fects generated during processes such as composite prepreg layup have features
that vary based on several external factors. Such salient features are mainly
a result of the part’s interaction with ambient light and the geometrical ap-

pearance of the defects.

To overcome these issues, recently, defect detection methods based on deep

learning have been gaining a lot of momentum [213, 256-258]. A key aspect in

226

(d)

Figure 10.1: Variation in the wrinkles formed during prepreg composite
layup

227

ensuring the resilience of robotic systems lies in generating high-fidelity data
conducive to training robust models. Researchers have explored implementing
deep learning in applications with extensive availability of process data, such
as images or thermal signatures from sensors [259]. The major challenge with
deep learning methods is their inherent dependency on the availability of huge
amounts of data. Additionally, this data needs to be processed and prepared
(e.g., annotated) for utilization in deep learning model training. Such pre-
processed data is not readily available for several manufacturing applications.
Furthermore, manually collecting and generating such data may not be feasible

due to time and cost constraints.

In processes where collecting online process data becomes infeasible, synthetic
data can play a critical role in the deployment of deep learning models. With
advancements in generative models and computer graphics, the learning com-
munity has pivoted towards use of synthetic data.[260-264]. Synthetic data
generation has emerged as a valuable avenue in the pursuit of solving the data
issue. Synthetic data can be effective in learning segmentation models if the
data exhibits realism not only in texture and appearance but also preserves
the innate physics of the original data. With conventional generative adver-
sarial methods, capturing real data’s physics is difficult. Synthetic images that
look photorealistic and manifest the physical features of the original data can
solve the data generation problem for defect detection in complex manufac-
turing settings. Therefore, synthetic image generation has a huge potential for
enabling the large-scale implementation of deep learning methods for defect

detection in manufacturing applications.

Synthetic image generation, as discussed, presents its own set of challenges
in the context of deep learning. However, the traditional methods employed
for synthetic image generation may not be sufficient when it comes to spe-

cific applications that deal with deformable objects, e.g., composite prepreg

228

layup processes. Composite prepreg sheets are highly pliable and have a pe-
culiar appearance dependent on the material type, weave pattern, etc. Due
to the compliant nature of the sheets, it is challenging to synthesize images
that emulate defects of the real-world process. Prepreg composite layup is
characteristically a low-volume process with the defects exhibiting an irregu-
lar pattern, complex deformations of the material, and anisotropic reflections
when captured using a 2D camera (Refer Fig. 10.1). Hence, we need a solu-
tion that can accurately model the sheet’s physical interactions under external

constraints to simulate the defects that occur in-process.

SYNTHETIC IMAGES

REAL IMAGES

)
)
A

Figure 10.2: Comparing Synthetic Images with the Real Images. Note:
The images shown here are for representative purposes only. They do not
correlate in terms of visual appearance.

This chapter presents a physics-informed synthetic data pipeline for robust
wrinkle and fold detection in deformable-sheet manufacturing. By marrying
high-fidelity thin-shell simulation with advanced CGI rendering, we create a
large-scale, photorealistic image corpus that captures the true physical and

visual complexity of sheet defects. Although composite layup can produce

229

many failure modes—air gaps, bridging, fiber distortion, etc. [106]—our focus
here is on wrinkles and folds, whose distinct 2D patterns lend themselves to

image-based segmentation.

A systematic framework is introduced to generate defect-prone sheet config-
urations: first, a validated physics model simulates how boundary conditions
and material properties give rise to wrinkles; then, a texture-mapping pipeline
renders these deformations under realistic lighting and camera models (see
Fig. 10.2). Using this approach, over 10,000 synthetic images encompassing

diverse wrinkle geometries and appearances were produced.

To ground our model in reality, we also collected 1,000 real in-process images
of wrinkles from an industrial prepreg layup cell. These were combined with
the synthetic set to form a hybrid training corpus. A Mask R-CNN network
[265] was then trained in two stages—first on synthetic data, then fine-tuned
on the real images. The resulting model achieves a mean Average Precision
(mAP) of 0.98 on a held-out set of 200 real images, accurately predicting both

bounding boxes and pixel-precise defect masks (see Fig. 10.13).

This physics-informed, simulation-driven approach bridges the sim-to-real gap,
overcomes data scarcity, and delivers an off-the-shelf solution for online defect
detection in prepreg composite layup. To facilitate further research, the full
synthetic and real-image datasets have been made open-source and publicly

available.

10.2 Overview of Approach

In this section, we will briefly outline the components of our defect detection
system. The entire system can be subdivided into four main components:

Real Image Collection, Synthetic Image Generation, Data Preparation, and

230

Figure 10.3: Process flow describing the system.

the Deep Learning Model. Fig. 10.3 gives an overview of these subsystems

and the individual elements.

Real Image Collection: Although collecting real data for the layup process
might be cumbersome, it is important that we capture the features embodying
wrinkles that are not simulated. To achieve this, we perform a step-by-step
layup and try to recreate scenarios that may lead to defect formation and
capture the ones that lead to actual defects. We collect about 1,000 images

using the approach described in Section 10.3.

Synthetic Image Generation: The synthetic imaging component consists
of a FEM thin-shell simulator and the CGI module for computer graphics
rendering. Our simulator here is based on the previous work by the authors
[1] that builds an accurate mechanical model of the composite sheet. This
simulator helps accurately predict sheet deformation under varied external
constraints. We emulate the possible configurations of the sheet that can lead
to the formation of anomalies on the sheet. Such anomalies signify the onset
of a defect. Furthermore, we also simulate wrinkle defects for an already-
conformed sheet on the composite tool. The simulator outputs a triangulated
mesh of the sheet. This mesh then passes through a CGI pipeline that uses
ray tracing to render a photo-realistic image. The rendering is improved by
applying the custom texture we generate for the composite sheet. The entire

process is detailed in Section 10.4.

231

Data Preparation: Once we have developed a hybrid dataset of real and
synthetic images, we describe methods to annotate the data and formally
define what constitutes a wrinkle or a defect. We describe the data preparation

method in detail in Section 10.5.

Deep Learning Model: After the data preparation and processing is com-
pleted, the properly annotated dataset can be used to train a deep learning
model for predicting defects. As mentioned in Section 10.1, we use the Mask
R-CNN architecture that outputs a mask of the predicted defect within a
bounding box. The model architecture and framework are discussed precisely

in Section 10.6.1.

Using the methodology presented in our work, we can design a robust system
that can be deployed to detect defects in the composite layup process. Such
a system can effectively detect wrinkles formed during composite layup and
detect anomalous configurations of the sheet that may lead to defect formation.
This obviates the need to remove the defect altogether. We will describe each

of the aforementioned components comprehensively in the following sections.

10.3 Real Image Collection

To generate a dataset comprising of images of the defects formed during the
actual process, we used an experimental setup with an industrial tool and two
sheet grasping robots as shown in Fig. 10.1 and Fig. 10.2. We use a set
of industrial grippers with custom 3D-printed attachments to grasp the sheet
appropriately. The objective of the setup is to emulate a robotic composite
layup process and capture various types of wrinkles and anomalies that may

emerge during the process.

In this work, we have focused only on wrinkles as a class of defects for detection.

Defining a wrinkle on a cross-section of the sheet that has already conformed

232

Type 1: Conformed Wrinkles Type 2: Anomalous Region Wrinkles

\

Figure 10.4: The two types of wrinkles witnessed during composite layup.
(a) The wrinkles formed on a conformed/draped portion of the sheet; (b)
an anomalous region on the undraped portion of the sheet that signifies the
onset of a wrinkle.

233

to the tool is straightforward. These wrinkles have clear, well-defined features,
as can be seen in Fig. 10.4a. They are formed due to improper flexing of the

sheet, leading to the formation of ridges.

A robust defect detection system should not only be able to detect already
formed wrinkles but also predict if a certain configuration of the sheet is likely
to form a wrinkle. This helps in avoiding defect formation altogether. To
achieve this functionality, we try to flex and hold the composite sheet in con-
figurations as depicted in Fig. 10.4b. These anomalous configurations are
where, if a robot or an operator were to conform the sheet to the tool, a wrin-
kle would form. These configurations are commonly encountered and are the
leading cause of wrinkle formation in the composite layup process. Hence, we

capture features of such anomalous regions and classify them as defects.

Most parts in the composite industry have tubular (or tubular-like) cross-
sections. This entails the tool being rotated about an axis to wrap the com-
posite sheet around the tool’s geometry. To incorporate this variation, we
capture images of the wrinkles at different tool configurations (Refer to Fig.

10.4).

We used an overhead 2D camera with a 1920 x 1080 resolution to capture the
images. There were slight variations in the lighting conditions during the data
collection process. Furthermore, we also changed the position of the grasping
robots to avoid introducing bias into the images. In this manner, we generate
a dataset of 1,000 real images. This dataset consists of 800 images with a
combination of Type 1 and Type 2 Defects and 200 images with no visible

defects.

234

10.4 Synthetic Image Generation

The real image dataset generated using the methodology of Section 10.3 pro-
vides a good benchmark for describing a wrinkle. Since generating large
amounts of real image data can be infeasible from the perspective of time
and material costs, we need to rely on synthetic images to train a robust and
accurate deep learning model. This section will describe the synthetic image
generation pipeline in detail. The key feature of our proposed pipeline is the
blend of accurate physics simulation that can emulate the Type 1 and Type 2
defects and a realistic texture of the composite prepreg material, capturing the
anisotropic parameters to generate photo-realistic images. We use the sheet
configurations that generated most of the defects as the basis for simulating
and replicating the Type 1 and Type 2 defects. We also generated synthetic

images with no perceivable defects.

We will describe every element of our synthetic image generation pipeline
and present a methodology to generate accurate and photorealistic images of

defects in the composite layup process.

10.4.1 Physics Based Simulator

To generate accurate synthetic images with realistic wrinkles, it is crucial to
simulate the sheet precisely. Traditional FEM simulators are infeasible due
to their slow convergence. In this work, we have employed a physics-based
simulator that is based on the previous work done by authors in [1], built on

top of the VegaFEM simulation library [29].

To generate synthetic imagery, we recreate the setup of Section 10.3 in the
simulation environment. A triangulated mesh of the same size as the sheet is
created and four constraints are added to replicate the sheet’s grasping points.

The aforementioned simulator can handle dynamic constraints. We move these

235

constraints so as to replicate the anomalous configurations experienced during
the real image generation process. We discuss this process in detail in the next

section.

10.4.2 Data sampling

Parameter Distribution
P [0,U(0.7,1.0)]
b [1,U(0.7,1.0)]
P [0,U(0,0.3)]
Py [1,U(0,0.3)]
sl [U(0.1,1.4),U(0, 04),1]
D) [U(-2.5,—1.2),U(0,—0.4),1]
T3 [U(0.1,1.4),U(0,0. 4) 1]
T4 [U(—-2.5,—-1.2),U(0,0.4),1]
Vi, Vo, V3, Vy U(0.1,0.3)
n N(0,0.1)

Table 10.1: Parameters and their distribution in data sampling.

In this section, we discuss our methodology to simulate the anomalous con-
figurations. We generate uniform data by randomly sampling the thin-shell
locations and world-coordinate trajectories of the four constraints located on
the perimeter of the sheet mesh. The constrained vertices of the mesh are se-
lected close to the perimeter of the rectangular sheet to replicate the scenario
of Section 10.3. These constrained points are denoted by P, P», Ps, Py. For
each trajectory, the converged simulated shape of the sheet is only stored at
the endpoint of the trajectory, regardless of the intermediate trajectory posi-
tions. Therefore, we simplify the trajectory of the constrained vertices into a
straight line from the starting to the ending point. We represent the vectors
joining starting and ending points by 71, 79, 73, 74, Where each 7; is sampled
randomly as given in Table 10.1. The velocities of the constraint vertices are

represented by Vi, Vs, V3, Vy, and are also sampled randomly (Table 10.1). The

236

simulation timestep t is a constant fixed at 10 milliseconds in our sampling
process. This enables the constrained vertices to reach the endpoints faster

while still being able to span the desired search space.

A trajectory is discretized into multiple simulation timesteps. In each timestep,
the four holding points move along their velocity vectors. To model the noise
from the robot actuators, the planner, the sensors, etc., we applied a simple
Gaussian noise n as a perturbation to the moving distance at each time step.

The sampling parameters are in Table 10.1.

The data sampling process can be executed in parallel. After the comple-
tion of trajectory execution, we stop the simulator after 55 timesteps, which
is sufficient for the simulator to converge and output the thin shell shape.
With a simple multi-core implementation, the proposed pipeline can generate
about 360 shapes per hour using a Core i7-9750H processor with six cores.
By employing the proposed pipeline, we generated 10,000 mesh shapes, cap-
turing varying wrinkling features. These shapes also capture some anomalous

configurations we encountered during real image data collection.

10.4.3 CGI Pipeline

Our physics-based simulator and the data sampling methodology produce
meshes that contain realistic wrinkles. However, to generate photo-realistic
images that can be used for training the model, we must also render the pro-
duced sheet meshes realistically. To do so, a high-quality texture of the sheet
is paramount. We employed CGI technology (described below) to generate a
detailed procedural texture of the composite sheet used in the real data collec-
tion. This texture can then be applied to the 10,000 synthetically generated
meshes to generate high-quality renders close to real images. In this work, ini-

tially, we experimented with generating an “Image Texture” by taking several

237

Figure 10.5: The black-and-white tiled matte indicates the fiber direction
of the synthetic texture.

images of the carbon fiber sheet under varying lighting conditions and camera
angles. However, the generated image texture could not precisely capture the
light interactions of the sheet, rendering the images to look distinctly differ-
ent from the actual image. Hence, we adopted a methodology to generate
a procedural texture of the carbon fiber prepreg sheet rather than an image

Texture.

We used Blender [266], an open-source animation and rendering software, to
build the carbon fiber texture and render the images. A texture was con-
structed to imitate the real carbon fiber. We developed a custom CG texture
in Blender using its node editing system. There were three main components
to the texture: The first was mimicking the texture of the parallel-running
fibers in the carbon fiber. This was accomplished by stretching a procedurally
generated noise map in one dimension. The second step was to find a way
to reorient these fibers at 90° angles in certain areas, since the carbon fiber

sheet is made of interwoven vertical and horizontal carbon fiber strips. This

238

Figure 10.6: Left: zoom on the CG texture. Right: photo of real carbon
fiber under a microscope (Visual Appearance may differ due to the scale).

was accomplished by procedurally generating an orientation map in different
software (Matlab), which can be seen in Fig. 10.5. The Blender texture gen-
erator then oriented the virtual fibers of the texture horizontally, where the
“orientation map” showed a pixel value of 0 (black), and vertically, where the
“orientation map” showed a pixel value of 255 (white). The result is a close
emulation of the interwoven appearance of the carbon fiber sheet. A close-up
view of the CG texture is shown in Fig. 10.6. Although to the naked eye, the
texture showcased in Fig. 10.6 might not look exactly similar in appearance
on a macro level, the objective of the texture is to capture the salient features
such as the shape of the wrinkle, appearance, etc. of the prepreg sheet. These

features are sufficiently good for training the deep learning model.

239

Figure 10.7: A collection of images at different exposures (top) was
compiled to create a 360° panoramic HDRI (bottom).

240

The generated texture can then be applied to the 10,000 synthetically gen-
erated meshes. When virtually lit and rendered, these objects look close to

photorealistic (see Fig. 10.2). We now describe this process.

First, we need to match the lighting of the virtual environment to the lighting
of the real environment. This entails capturing a spherical panorama of our
manufacturing space. We do this by photographing a mirror sphere and then
wrapping this 2D image onto a 3D photo-sphere in the computer. We pho-
tographed a standard 3” chrome ball commonly used in CGI applications from
two different angles and at several different levels of camera exposure to cap-
ture the entire spectrum of light present in the workroom. These images were
then wrapped to create the 360° high dynamic range image (HDRI) shown in
Fig. 10.7.

Next, we apply the texture and the lighting setup to produce renders that
closely replicate real-world images. The synthetic images generated using this
framework can be juxtaposed against real images in Fig. 10.2. We rendered
the 10,000 meshes to produce 10,000 images of the composite sheet in varying
configurations. The rendering was performed on a core i7-11700 (8 core, 2.5
to 4.9 GHz) processor boosted with an NVIDIA GeForce GTX 1660 Ti 6GB
GPU. With this configuration, the average time to render a single image was
about 5 seconds. Using these methods, a digital rendering environment can
then be created with optical materials and lighting conditions that match the
real manufacturing environment; see Fig. 10.8. We achieved this by importing

the HDRI images into blender and consequently performing ray tracing.

The proposed CGI pipeline helped us in augmenting our real dataset of 1,000
images. This hybrid dataset with 11,000 images is sufficient for feature extrac-
tion and is employed for training the deep learning model proposed in Section

10.6. Fig. 10.9 summarizes the synthetic image generation approach.

241

Figure 10.8: The virtual environment.

242

(d)

Figure 10.9: (a) Trajectory of the four holding points; (b) the shape after
executing the trajectory in our physical-based simulator; (¢) output mesh
before rendering; (d) the CGI-rendered mesh.

243

10.5 Data Preparation

The hybrid dataset generated using the methodology described in Sections
10.3 and 10.4 needs to be appropriately annotated for model training. We
described the key features of wrinkles in Section 10.3 and categorized them
into Type 1 and Type 2 defects. We used the same description to generate
the annotations for the dataset. We classify both Type 1 and Type 2 defects
as one class called “wrinkle”. Fig. 10.10 shows example annotations on a real

and a synthetic image.

Figure 10.10: Annotations depicting the Type 1 and Type 2 defects.
Kindly note that both Type 1 and Type 2 Defects are annotated as one
single class “Wrinkle”

We used an online open-source tool called makesense.ai to perform the an-
notations. This tool helped us generate polygon annotations that engulf the
image’s defected region (“wrinkle”) and can be saved as JSON files. All the
images were annotated using only one class per annotation called “wrinkle”.
Images with no visible defects received no annotation. Once we complete
the data preparation phase, we can then use the annotated data to train our

proposed deep learning network.

244

10.6 Model Description

Our modeling methodology is based on the image segmentation deep learning
model Mask R-CNN [265]. We use a two-stage training procedure to train
the image segmentation model to detect defects in the composite sheet. The
first stage is a pre-training stage that uses a large synthesized dataset. The
second stage is a fine-tuning stage that utilizes a small real-world dataset. We
further introduce a scaled mixing technique to the fine-tuning stage so that
the synthesized dataset is also employed in the fine-tuning stage; this avoids
catastrophic forgetting. Our deep learning model architecture and training

details will be described in Sections 10.6.1 and 10.6.2, respectively.

10.6.1 Model Architecture and Settings

Figure 10.11: Mask R-CNN architecture.

We applied the Mask R-CNN shown in Fig. 10.11 as our base model for
the image segmentation task. After trying typical backbones, including VGG
[267], Inception [268], and DenseNet [269], We select a ResNet-50 for its best
performance among them as the backbone network which extracts features
from the input image. Feature Pyramid Network (FPN) [270] is used as the
neck and backbone network. This architecture better utilizes the extracted

features in a multi-scale manner.

245

Ultimately, we use two heads applied as the output of the model, one for
outputting the bounding box and another for predicting the mask. The two
heads share a Region-of-Interest (Rol) network that proposes the potential

Rols on top of the neck network.

The Mask R-CNN we use has been pre-trained on the Microsoft Common
Objects in Context (MS COCO) [271]| dataset. This dataset consists of 1.5
million labeled images from 80 categories. Our pre-trained model learns rich
common visual patterns of images after performing transfer learning by itera-
tively adjusting modeling parameters through in-domain images of the carbon
fiber sheet. The proposed model will be able to detect task-specific patterns
(i.e., defects) quickly. Compared to training a model from scratch, we need
less redundant data to let the model start from learning the basic common

patterns.

Our implementation is based on the MMDetection framework [272]. The
model is trained on a single NVIDIA GeForce RTX 2070 GPU. For the model
that uses ResNet-50 as the backbone, the entire training process takes about
12.5 hours. The memory use is approximately 4.4 GB, and the inference runs
at about 14.5 fps. We also explored variants of the model architecture that

improve the model performance; they will be discussed in Section 10.7.3.

10.6.2 Training

Despite the high quality of our synthetic images, the sim2real gap [273, 274]
still exists. For example, the real carbon fiber sheet may have a slightly worn
surface, which causes the reflectance to be uneven. The physical specifica-
tions of a real sheet may also change over time. There may be temperature
variations. The complex lighting conditions in our production environment

are also difficult to reconstruct perfectly. The movements of the real robots

246

are computationally expensive to be completely reproduced in the simulator.
Finally, the error from the physical simulator itself and the imperfection of the
rendering engine should also be considered. These minor errors accumulate
and cause a gap between the images of the real and virtual sheets. The time
and processing cost of pursuing a higher degree of realism in the synthetic
data increases exponentially, even higher than the cost of collecting real data.

Thus, a better solution is to compensate for the gap through real images.

However, directly mixing the synthesized data with real data and then using
the mixed dataset to train the model would cause an inductive bias. This
might cause the model to overly rely on the features learned from virtual
images while ignoring real images. We desire to learn the physics of the sheet
from the synthetic data, but then use the real data to compensate for the
details in the real production environment. The problem occurs due to the
data imbalance, given that synthetic images outnumber real ones by 10 to 1

in our dataset.

One approach to this problem is using a 2-stage training method. Sajjan et
al. [275] proposed to use a two-stage training procedure that first pre-trains
the network on a large out-of-domain real-world dataset, then fine-tune it on
a smaller in-domain synthetic dataset for the robotic grasp of transparent
objects. Inspired by their method of learning basic patterns in the first stage
and then transferring knowledge into the target real domain in the second
stage, we applied a two-stage training method that first pre-trains on a large

synthetic dataset and then fine-tunes the model on the smaller real dataset.

In the pre-training stage, the model learns typical patterns of the defects
formed in the composite sheet and the deformation of the sheet caused by
the movement of robots. By using our physics-informed simulator to simulate

the deformation of the composite sheet, we implicitly introduce the physical

247

knowledge as a bias into a deep learning model. This helps the model under-
stand the generating process of a defect. In the fine-tuning stage, the model
learns task-specific knowledge of how the defects look in the real layup, which
includes additional noise originating from lighting conditions, robot actuation,

occlusions, etc.

Another way to mitigate the gap between the real and synthesized datasets is
to regard it as a multi-task problem where the model has to learn both the
physics-based behavior through the synthetic dataset and the expert knowl-
edge about the defects in the real world through the real dataset. We use
scaled mixing that entails training with each real image several times, whereas
training only once for each synthesized image. This is a technique that has
succeeded in training multilingual language models where there is a huge dis-
parity between the data set sizes of larger languages vs smaller languages; each
language is a subtask to learn. Instead of directly mixing real and synthetic
data, we replicate the real data k times before mixing (we use k = 5). Fur-
thermore, we combine this approach with a 2-stage training by applying scaled
mixing in the second stage. The performance and analysis of these training

techniques in our experiments will be discussed in Section 10.7.1.

10.7 Results

We evaluated our method on images acquired from a robotic composite layup
cell. Section 10.7.1 will discuss the experimental setting. We will also discuss
techniques to enhance our model (Section 10.7.2). The experimental results
are analyzed in Section 10.7.3. Finally, we also discuss failure cases where our

model failed to produce a successful prediction (Section 10.7.4).

248

(f)

Figure 10.12: Data augmentation methods. (a) Original image, (b) random
shift, rotation, or scale, (c) random brightness and contrast, (d) random
hue, saturation, value, (e) randomly shifted RGB values, and (f) random
blur.

249

10.7.1 Training settings

The real dataset consists of 1,000 images, and the synthetic dataset has 10,000
images. We split the real dataset to 6:2:2 for training, validation, and test sets.
For models trained in 2 stages, we use the entire synthetic dataset for training
in the first stage, whereas we use the validation set of the real dataset for

model selection.

In both stages, we apply data augmentation techniques comprising random
shifts, rotations, and scalings of the images. Hence, before an image enters our
training pipeline, it will initially pass through the data augmentation pipeline.
With a probability of 0.5, the image is randomly transformed by shifting it
by a pixel amount uniformly sampled from U[—0.0625,0.0625] for the z and
y axes, respectively. Subsequently, the image is rotated by an angle uniformly
sampled from [—45,45°], with a probability of 0.5. Finally, with a 0.5 proba-
bility, we scale the image by a factor uniformly sampled from [0.9, 1.1]. These
data augmentation methods largely expand the dataset size and introduce an
inductive bias whereby the patterns of the defects are invariant to the trans-
formations from the camera. This, in turn, helps the model learn more robust
representations. While our data augmentation pipeline is randomized, fixing
the random seed in our experiment ensures the reproducibility of the images

when re-running the experiment.

We employ the Intersection-over-Unification (IoU) area metric to evaluate the
accuracy of our deep network. This metric divides the area of intersection of
the predicted defect region and the ground truth region by the area of the
unified region. To define whether the output is considered accurate, we use
the common IoU threshold of 0.5, based on work done in the PASCAL Visual
Object Classes (VOC) challenge [276]. This means that a predicted defect

250

with IoU larger than the threshold of 0.5 is considered positive, whereas an

IoU below 0.5 is regarded as negative.

We implemented our deep learning pipeline using the PyTorch framework
[277]. We trained 12 epochs for each stage and applied Stochastic Gradient
Descent (SGD) with a momentum of 0.9 and weight decay of 1le—4 to optimize
our model. The learning rate is 2e — 3. A step learning rate scheduler is
employed; hence, in the 8th and 11th epochs, the learning rate will be scaled
down by x0.1. We also applied a linear learning rate warm-up for 5000 training

steps with a ratio of le — 5.

10.7.2 Model enhancement

Test mAP Train mAP

Def. Pre. Und. Avg. Gain Def. Pre. Und. Avg. Gain Mem. Inf. Train.

Base 0.938 0.832 09 0.89 - 0.938 0.821 0.875 0.878 - 4.4 GB 14.5fps 0.5 hrs

+ Syn. data 0.944 0.865 0.925 0911 24% 0938 0.844 0.9 0894 1.82% 4.4GB 145 fps 5.5 hrs
+ 2-Stages 0.956 0.898 0.95 0.935 5.02% 0.949 0.868 0.917 0.911 3.80% 4.4 GB 14.5fps 5.5 hrs
+ Scaled 0.977 0932 0.975 0961 8.02% 0.956 0.892 0.945 0.931 6.04% 4.4GB 14.5fps 7.5 hrs
f Scaled 2-S. 0.987 0.945 1.0 0.977 9.81% 0.961 0.903 0.958 0.941 7.14% 4.4GB 14.5fps 12.5 hrs
More aug. 0.940 0.838 0.925 0.901 1.24% 0.939 0.830 0.942 0.904 2.92% 4.4GB 145 fps 0.5 hrs
+ Scaled 2-S. 0.989 0.948 1.0 0979 10.0% 0.966 0.912 0.967 0.948 8.01% 4.4 GB 14.5fps 12.5 hrs
More layers 0.936 0.838 0.9 0.891 0.15% 0.942 0.833 0.875 0.883 1.01% 6.4 GB 11.7 fps 0.72 hrs
+ Scaled 2-S. 0.980 0.939 0.975 0.965 8.39% 0.960 09 0942 0.934 6.38% 6.4GB 11.7fps 18 hrs
Cascade 0.942 0.847 0.925 0.905 1.65% 0.947 0.848 0.95 0.915 4.21% 6.0GB 9.6 fps 0.6 hrs

+ Scaled 2-S. 0.990 0.947 1.0 0979 10.0% 0.963 0.918 0.967 0.949 8.13% 6.0GB 9.6 fps 15 hrs

ResNeSt 0.947 0.841 095 0913 255% 0.950 0.845 095 0915 4.21% 5.5 GB 13.3 fps 1 hrs

f Scaled 2-S. 0.989 0.950 1.0 0.98 10.08% 0.965 0.913 0975 0.951 8.31% 55GB 13.3fps 25 hrs

Table 10.2: Results of experiments. All gains are compared to the “Base”
model. Detailed interpretation is available in Section 10.7.3.

Apart from the experiments that explore the effectiveness of the training tech-
niques and the use of synthetic data, we performed additional experiments to
enhance our model. This helped us devise effective auxiliary schemes for our

application, as described next.

Advanced backbone network: We explored the use of the state-of-the-

art backbone network ResNeSt-50 [278|, which is an advanced version of the

251

ResNet backbone we used as the base model. ResNeSt-50 introduces channel-
wise attention to the different network branches of ResNet to better capture
cross-feature interactions and learn diverse representations. To analyze the
trade-off between the cost and accuracy improvement, we replace the ResNet-

50 network with ResNeSt-50.

Deeper model: We use a deeper backbone network, ResNet-101 to replace
the ResNet-50 network in this experiment. This helped us examine the cost

vs accuracy trade-off of using a deeper model.

Advanced model architecture: We apply a Cascade Mask R-CNN [279],
which improves the Mask R-CNN architecture by introducing a multi-stage
object detection architecture. This consists of a sequence of detectors trained
with increasing loU thresholds to replace our basic Mask R-CNN architecture.
This helped us explore the trade-off between a more complex and advanced

architecture and accuracy improvement.

Additional data augmentation: We introduce additional data augmen-
tation techniques into the pipeline to explore the influence on model perfor-
mance due to this subsequent inductive bias. We include randomly changing
brightness and contrast with a factor uniformly sampled from [—0.2,0.2] with a
probability of 0.2; randomly shifting RGB channel by pixels uniformly sampled
from [—10, 10] for each channel with a probability of 0.1; randomly changing
the hue, saturation and value of the input image with a quantity uniformly
sampled from [—20, 20], [—30, 30], and [—20, 20], respectively, by a probability
of 0.1; randomly shuffling the RGB channels by a probability of 0.1; and ran-
domly imposing blur with the kernel size uniformly sampled from [3,7] with
a probability of 0.1. These data augmentation methods introduce inductive

biases such that the patterns of defects are invariant to the color of the carbon

252

fiber sheet and the camera parameters. The data augmentation methods are

shown in Fig. 10.12.

10.7.3 Analysis of results

Figure 10.13: Model prediction examples. The orange rectangle marks the
predicted bounding box, the transparent cyan region represents the
predicted mask, and dark blue polygons denote the ground truth.

The results of our experiments are shown in Table 10.2. We compare the
performance of the mask R-CNN-based base model and the four model en-

hancements discussed in Section 10.7.3.

For each of the five variants, we first train them without synthetic data and
then demonstrate the improvement with synthetic data based on the best-
observed training techniques. The best training technique combines Scaled
mixing and 2-Stage training, denoted as “+ Scaled 2-S.”. The results show

that for all variants, the synthetic data gives a gain of about 8 to 10%.

In the first variant, we experimented with the base model denoted as “Base”
and performed ablation studies for training techniques. “+ Syn. data” denotes
directly mixing the real and synthetic data set. It provides only a nominal
increment of 2.4% compared to the model trained without synthetic data.
By introducing “2-Stages” training, the data imbalance problem is moderated.
However, this approach is still limited by the “catastrophic forgetting” problem.

This is reflected in the model trained with “Scaled” mixing, where the gain

253

increases from 5.02% to 8.02%. Finally, by combining the two approaches, the

model achieved an overall gain of 9.81%.

The advanced data augmentation (“More aug.”) increased average mAP by
1.24% and slightly improved the trained model on synthesized data. Ad-
vanced backbone model ResNeSt-50 (“ResNeSt”) achieved the highest 10.08%
improvement, but the memory use increased to 5.5 GB while the inference
speed decreased to 13.3 fps, and training time increased to 25 hours. Cascade
architecture (“Cascade”) also achieved a higher mAP but increased the mem-
ory use to 6.0 GB. The inference speed decreased to 9.6 fps while the training
time increased to 15 hours. However, using this deeper model, ResNet-101
with 101 layers (“More layers”), the average test mAP gain for the model with
synthetic data decreased from 9.81% to 8.39%. This may be due to the over-
complexity of the model for our application. Memory usage increased to 6.4
GB, inference speed decreased to 11.7 fps, and training time increased to 18

hours.

The results show that our training techniques are effective. The augmentation
methods do improve the performance of model architectures such as the Cas-
cade architecture or the advanced backbone model. Additionally, advanced
data augmentation helps the model to generalize the dataset better. That
said, an upgrade to the model architecture incurs the cost of lowering the
computational efficiency. Due to our problem’s relatively lower complexity
compared to a general image segmentation model, which may contain millions
of samples, a highly complex model with too many layers eventually deterio-

rates the performance.

Overall, our method achieved the highest average test mAP of 0.98. A proper

choice of model complexity and the trade-off between higher performance due

254

to advanced model architecture vs efficiency is important in real-world ap-
plications. Moreover, additional data and training “tricks” also require more

training time.

10.7.4 Analysis of failure cases

(d)

Figure 10.14: Failure cases. The orange rectangle and transparent cyan
regions mark the bounding box and mask predicted by the model,
respectively; the dark blue polygons denote human annotation. (a) False
positive (Unexpected region), (b) Confused region, (c¢) Redundant
prediction, (d) Annotation mistakes.

We further analyzed the test samples where the model failed to make satisfac-
tory predictions in the test set. We summarize these instances in the following

four cases, and recommend possible solutions.

Failure case 1: False Positives The model sometimes predicts an unex-
pected region; this happens very rarely. An example of this case is shown

in Fig. 10.14a, where the region on the left side predicted by the model is

255

unexpected. This can be avoided simply by using model ensembling [280],
i.e., training multiple models and making predictions by voting. Although
deep learning models always have the risk of behaving unexpectedly, these
behaviors usually vary between models. Hence, by ensembling the results, the
weight of each unexpected prediction will be largely reduced, and thus, the

risk of predicting unexpected regions will be largely avoided.

Failure case 2: Confused Region The edge of the composite tool overlaps
with the wrinkle, making it hard to distinguish the defect and defect-free
region as shown in Fig. 10.14b. Such local features of the tool sometimes
make it difficult to locate the wrinkle when the defect lies in the vicinity
of these features. This is a less obvious case where the boundary between
defective and defect-free regions is overlapping. This could be attributed to
the high sensitivity of the model, which would try to catch all potential defects.
However, such sensitivity is preferred in our intended application, where a false
negative that potentially causes layup failure is more detrimental than a false
positive. The model may implicitly be imposed with such inductive biases by
the data annotation process. A high sensitivity may also be a possible cause
of the failure in case 2. Like case 1, model ensemble methods could also solve

this case.

Failure case 3: Redundant Prediction In this case, the same wrinkle
region is predicted multiple times, as shown in Fig. 10.14c. The upper wrinkle
has been marked by the model twice. Although reducing the test accuracy,
this case does not influence real-world applications, and we can merge the

predictions.

Failure case 4: Annotation mistakes Fig. 10.14d shows two examples
of such mistakes. The top annotation in the image is very small. Therefore,

a small perturbation of the model prediction will cause the IoU metric to

256

recommend it as a failed prediction. However, the prediction is completely
acceptable in the actual application. The bottom annotation in the image is a
weak wrinkle missed by the model. It is an unexpected defect due to reusing
the same composite sheet several times during the real image collection pro-
cess. Furthermore, there might be some ambiguity amongst human annotators
as to whether to annotate such weak wrinkles as a defect or not. An improved
annotation and data collection procedure could easily handle these annotation

€eITors.

10.8 Summary

In this chapter, a physics-informed, deep learning-based framework for detect-
ing wrinkles and folds in sheet-like deformable objects using photo-realistic
synthetic data is presented. We demonstrated how combining a high-fidelity
physics-based simulation with advanced CGI rendering techniques enables the
generation of realistic training datasets for defect segmentation, which is crit-

ical for domains where large-scale real data collection is impractical.

This chapter presented a complete pipeline: simulating physically plausible
wrinkle formations, rendering them into high-quality images, and training a
Mask R-CNN model for instance-level segmentation of defects. By accurately
localizing every visible wrinkle or fold, the trained model empowers robotic
systems to sense the onset of defects and adapt their manipulation strategies

accordingly, enabling online failure recovery and enhancing process resilience.

The experiments validate the effectiveness of hybrid training, first pretraining
on synthetic images, then fine-tuning with a limited set of real-world process
data. This two-stage approach achieved a mean Average Precision (mAP) of

0.98 on real defect images, demonstrating that synthetic data, when generated

257

with strong physical priors, can significantly boost model performance and

generalization.

Beyond achieving high segmentation accuracy, this chapter highlights sev-
eral broader contributions: (1) A physics-informed synthetic data generation
framework that captures realistic deformation behaviors, (2) A detailed CGI-
based methodology for generating photo-realistic textures and defect appear-
ances, (3) An ablation study identifying the most effective modeling and train-
ing strategies for defect detection, and (4) A rapid, scalable process for dataset

generation and model deployment in industrial settings.

The system developed here can be deployed online in production environments,
enabling real-time monitoring of composite layup or other sheet manipulation
processes. Such a robust and adaptive defect detection capability is essential
for improving process quality, reducing scrap rates, and ensuring the scalabil-
ity of robotic automation in high-performance manufacturing tasks. Beyond
the specific application of defect detection in composite layup, this work exem-
plifies a broader principle that runs throughout this dissertation: the fusion of
physics-based modeling with modern Al methods can enable scalable, robust,
and explainable solutions for deformable object manipulation. By grounding
deep learning in physical realism—through simulation, structured data gen-
eration, and task-informed model design—we can overcome the challenges of
data scarcity, uncertainty, and generalization that often limit the deployment

of learning-based robotics in industrial environments.

258

Chapter 11

Conclusions

11.1 Intellectual Contributions

In this dissertation, we introduced a novel physics-informed learning paradigm
with the motivation to advance the field of robotic manipulation, specifically
for deformable objects in high-precision industrial environments. We intro-
duced a class of three deformable objects that are understudied, yet frequently
encountered in high-performance industrial environments: (1) a large-scale
sheet (2D), (2) a compliant tool (2D), and (3) a shell-like deformable package
(3D). We discussed how each of these objects demands a fresh perspective
for enabling robots to operate effectively in semi-structured and unstructured
environments, where deformability introduces significant complexity. To meet
these challenges, this dissertation proposes a structured framework that in-
tegrates physics-based priors into the key components of robotic intelligence:

simulation, planning, learning, and anomaly detection.

First, this dissertation demonstrates how simulation-based learning, with physics-

informed object models, enables accurate planning and robust anomaly detec-
tion for complex deformable objects. Second, it incorporates advanced learn-
ing frameworks to capture how tool compliance introduces highly non-linear

object dynamics—exemplified in industrial tasks like robotic screwdriving,

259

thereby crafting models that are data-driven as well as physically explainable.
Third, the concept of task-informed physics constraints is introduced, which
illustrates how planning for large deformable sheets can explicitly account for
manufacturing process requirements. Lastly, this dissertation presents compo-
sitional learning frameworks that decompose complex robotic tasks—such as
bi-manual manipulation and multi-step task sequencing—into modular, learn-
able subtasks, promoting generalization, interpretability, and scalable policy

design.

Together, these ingredients form a blueprint for crafting robotic agents that
move closer to achieving human-level dexterity in deformable object manipu-

lation, while meeting the rigorous demands of industrial applications.

To summarize, the specific contributions of this dissertation are:

e Physics-informed Simulation for Complex Deformable Objects: Develop-
ment of structured simulation frameworks for large sheet-like objects and
closed-form packages, integrating real-world parameter estimation and

physics-based modeling.

e Task Sequencing Policies from Expert Knowledge: Introduction of meth-
ods to capture and model human expert task planning for deformable
object processes, incorporating both performance and effort-based pref-

erences through inverse reinforcement learning.

e Simulation-based Manipulation Planning: Creation of grasp planning
and manipulation strategies for precision tasks using simulation-guided

search, balancing task objectives and physical constraints.

e Compliance-aware Modeling for Manipulation Under Uncertainty: For-
mulation of physics-informed models for screwdriving under uncertainty,
demonstrating how active and passive compliance influences dynamic be-

havior and success rates.

260

e Physics-driven Synthetic Data for Anomaly Detection: Design of a hybrid
simulation and CGI framework to generate photo-realistic defect datasets
for training deep learning models for wrinkle and fold detection in sheet-

like objects.

Collectively, these contributions lay the foundation for a new paradigm in
robotic manipulation — one that bridges structured physical knowledge with
flexible learning models to achieve robustness, scalability, and safety in the

manipulation of complex deformable objects.

11.2 Anticipated Benefits

The cornerstone of this dissertation rests on a fundamental belief: robots will
profoundly transform human life, reshaping how we work, create, and live on
this planet. The ideas and methods proposed in this dissertation represent
a small but critical step toward this future, one where robots serve as col-
laborators, extending human capability across a wide spectrum of domains.
Deformable object manipulation is just one essential building block among

many that must be developed to realize this vision.

From both technical and societal perspectives, the anticipated benefits of this

work include:

o FExplainability and Interpretability: The physics-informed learning paradigm

proposed here is built upon the principle that robotic decision-making
must be understandable and explainable. By grounding manipulation
policies in physical principles, this work ensures that robots can rea-
son about their actions in ways that are transparent and verifiable —
an essential requirement for building trust and ensuring safety at scale,

particularly in industrial deployments.

261

o FEconomic upliftment with improved quality of life: Industries across man-
ufacturing, logistics, and assembly are experiencing an acute shortage of
labor willing to perform repetitive, strenuous, and hazardous tasks. Many
of these tasks involve deformable object manipulation under uncertainty,
where manual dexterity has historically been irreplaceable. This disserta-
tion lays a foundation for deploying robots to take over these physically
demanding tasks, fostering economic growth while allowing humans to
pursue more intellectually engaging, creative, and safer forms of work,

ultimately leading to a higher quality of life.

o Faster Deployment and Greater Adaptability: A major bottleneck in
traditional robotics has been the rigidity of preprogrammed systems,
which lack flexibility for high-mix, low-volume (HMLV) industrial en-
vironments. Meanwhile, purely data-driven learning systems have strug-
gled with generalization and robustness. By combining structured phys-
ical knowledge with learning, this dissertation proposes a solution that
accelerates robot deployment timelines and extends their adaptability
across a wide range of tasks, especially those involving complex, vari-
able deformable objects where conventional automation was previously

uneconomical.

e Technological Advancement Toward Human-like Learning: The physics-
informed learning framework introduced in this dissertation moves robotic
systems closer to human-like reasoning and modular learning. Much like
the human brain, where specialized modules interact to perform complex
tasks, the proposed compositional, physics-grounded architectures enable
robots to operate safely, learn effectively from limited data, generalize

across conditions, and recover from unexpected failures.

262

Overall, the anticipated benefits of this research advance the broader field of
robotics toward a future where intelligent machines can adapt, collaborate,
and scale across real-world industrial applications, driving profound impacts

in automation, economic sustainability, and human well-being.

11.3 Future Directions

This dissertation represents only a small but meaningful step toward en-
abling robots to handle the complexity of deformable object manipulation
at human-level skill and adaptability. While the contributions here lay impor-
tant groundwork, many exciting avenues for future research remain, offering
opportunities to further advance toward the broader goal of building intelli-

gent, resilient, and explainable robotic systems.

Several key directions for future work include:

o Toward Unified World Models: This work lays a foundation for the devel-
opment of unified, compositional world models for robotics—models that
can seamlessly generalize across a wide variety of deformable materials
and their complex hybrid interactions. By embedding physics-based pri-
ors, such as energy conservation principles, accurate contact dynamics,
and explicit material parameters, into structured graph representations,
it becomes possible for a single model architecture to efficiently represent
diverse deformable object behaviors simply through adjustments in node-
level properties such as stiffness, damping, and elasticity. High-fidelity
FEM simulations, as described in Chapter 4, provide a practical means
for generating vast amounts of realistic synthetic trajectories, system-
atically covering the complete range of contact scenarios, deformation
modes, and inertial responses. This synthetic data can pre-train a Graph

Neural Dynamics backbone (Chapter 5), enabling it to internalize correct

263

inductive biases before being fine-tuned with limited amounts of real-
world sensor data. Moreover, generative modeling frameworks grounded
in these physics-based priors offer an additional powerful avenue: they
can rapidly synthesize physically plausible scenarios or anticipate unseen
object behaviors and interactions. By conditioning generative models on
physically meaningful latent parameters, such as material stiffness or fric-
tion coefficients, robots can efficiently explore hypothetical scenarios, en-
abling anticipatory control and informed decision-making in dynamic en-
vironments. Crucially, the integration of an online parameter estimation
mechanism allows the model to continually refine these embedded ma-
terial properties during operation, facilitating rapid adaptation to novel
objects and evolving task conditions without requiring expensive retrain-
ing. Collectively, these strategies offer a robust, scalable pathway toward
flexible, accurate, and adaptive robotic manipulation of deformable and

hybrid objects.

Learning Beyond Human Demonstrations: In industrial and real-world
applications, the ultimate potential of robotic manipulation lies not merely
in replicating human skills but in surpassing human limitations in speed,
precision, and reliability. The approaches introduced in this dissertation
provide stepping stones toward frameworks that not only capture essen-
tial human expertise through demonstration but also leverage structured
physical priors and constraints to autonomously optimize performance
beyond what humans typically achieve. Specifically, the inverse rein-
forcement learning-based sequencing method (Chapter 6) offers an initial
pathway for encoding and interpreting human preferences and rationales,
enabling robots to generalize sequencing behavior effectively across di-
verse tasks and geometries. By integrating these learned strategies with

accurate forward models of the object being manipulated (Chapter 3),

264

one can improve on this initial policy to better suit the robot’s embodi-
ment so that we can achieve optimal performance and generalize across

variations in objects and operating conditions.

Learning Safe and Resilient Manipulation: In complex manipulation tasks
involving deformable and rigid objects, encountering unforeseen scenar-
ios is inevitable. Therefore, robotic systems must autonomously recog-
nize (as detailed in Chapter 10), diagnose, and recover from failures to
ensure reliability and resilience (Chapter 8). This dissertation demon-
strates that physics-informed dynamics modeling frameworks (Chapters
4 and 5), coupled with task policies learned through inverse reinforcement
learning and expert demonstrations (Chapter 6), offer powerful represen-
tations for anticipating and managing manipulation failures. Failures
such as grip loss due to excessive deformation or misalignment at con-
tact interfaces are fundamentally tied to the physical state of the system.
For instance, suction-based failures predominantly arise from deforma-
tion of the object at the suction—object interface. By utilizing the latent
space of dynamics models, which captures deformation patterns, force
distributions, and is grounded on material properties, robots can reli-
ably predict imminent failures. Furthermore, generative models incorpo-
rating physics-based priors can systematically synthesize diverse failure
scenarios, enriching the training dataset with realistic, challenging cases.
Policies trained in this manner can proactively anticipate and mitigate
potential failures, rather than merely react to them. Integrating latent-
space predictions with physics-informed generative modeling thus enables
robotic systems to autonomously detect early indicators of failure and ex-
ecute timely recovery actions. This unified approach provides a robust

framework for continual policy refinement, significantly enhancing the

265

safety, reliability, and effectiveness of robotic manipulation in dynamic,

real-world environments.

e Fxpanding to a Broader Class of Deformable Objects: While this dis-
sertation addressed several complex and industrially relevant classes of
deformable objects, many deformable categories remain unexplored. Fu-
ture work could extend these methods to include irregular-shaped sheets
(e.g., automotive seat covers), materials with anisotropic and viscoelas-
tic properties, multi-layered composites, and even biological tissues, each

introducing new modeling, planning, and control challenges.

By addressing these future challenges, physics-informed learning could evolve
into a cornerstone technology, enabling the next generation of intelligent robotic
systems that operate safely, efficiently, and robustly in the dynamic, uncertain

worlds that define real industrial and everyday environments.

266

References

1. Chen, Y.-W., Joseph, R. J., Kanyuck, A., Khan, S., Malhan, R. K.,
Manyar, O. M., et al. A Digital Twin for Automated Layup of Prepreg
Composite Sheets. Journal of Manufacturing Science and Engineering
144, 041010. doi:10.1115/1.4052132 (2022).

2. Manyar, O. M., McNulty, Z., Nikolaidis, S. & Gupta, S. K. Inverse
reinforcement learning framework for transferring task sequencing poli-
ctes from humans to robots in manufacturing applications in 2023 IEEE
International Conference on Robotics and Automation (ICRA) (2023),
849-856.

3. Manyar, O. M., Desai, J., Deogaonkar, N., Joesph, R. J., Malhan, R.,
McNulty, Z., et al. A Simulation-Based Grasp Planner for Enabling
Robotic Grasping during Composite Sheet Layup in 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA) (2021), 930
937. doi:10.1109/ICRA48506.2021.9560939.

4. Manyar, O. M., Narayan, S. V., Lengade, R. & Gupta, S. K. Physics-
Informed Learning to Enable Robotic Screw-Driving Under Hole Pose
Uncertainties in 2023 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS) (2023), 2993-3000. doi:10 . 1109/
TR0S55552.2023.10342151.

5. Manyar, O. M., Ye, H., Sagare, M., Mayya, S., Wang, F. & Gupta, S. K.
Simulation-Assisted Learning for Efficient Bin-Packing of Deformable
Packages in a Bimanual Robotic Cell in 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2024), 5211-
5218.

6. Manyar, O. M., Cheng, J., Levine, R., Krishnan, V., Barbi¢, J. & Gupta,
S. K. Physics informed synthetic image generation for deep learning-
based detection of wrinkles and folds. Journal of Computing and Infor-
mation Science in Engineering 23, 030903 (2023).

7. Kroemer, O., Niekum, S. & Konidaris, G. A review of robot learning
for manipulation: Challenges, representations, and algorithms. Journal
of machine learning research 22, 1-82 (2021).

8. Mazumdar, S., Pichler, D., Benevento, M., Seneviratine, W., Liang, R.
& Witten, E. American Composites Manufacturing Association 2020
State of the Industry Report 2020.

267

https://doi.org/10.1115/1.4052132
https://doi.org/10.1109/ICRA48506.2021.9560939
https://doi.org/10.1109/IROS55552.2023.10342151
https://doi.org/10.1109/IROS55552.2023.10342151

10.

11.
12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Fleischer, J., Teti, R., Lanza, G., Mativenga, P., Mohring, H.-C. &
Caggiano, A. Composite materials parts manufacturing. CIRP Annals
- Manufacturing Technology (2018).

P. Volino, N. M.-T. & Faure, F. Mechanical comparison of new compos-
ite materials for aerospace applications. ACM Transactions on Graphics
(2009).

Sin, F. S., Schroeder, D. & Barbi¢, J. Vega FEM Library.

Aono, M., Breen, D. E. & Wozny, M. J. Fitting a woven-cloth model
to a curved surface: mapping algorithms. Computer-Aided Design 26,
278-292 (1994).

Wang, J., Paton, R. & Page, J. The draping of woven fabric preforms and
prepregs for production of polymer composite components. Composites
Part A: Applied Science and Manufacturing 30, 757765 (1999).
Aono, M. in CG International’90 95-115 (Springer, 1990).

Collier, J. R., Collier, B. J., O’Toole, G. & Sargand, S. Drape prediction
by means of finite-element analysis. Journal of the Textile Institute 82,
96-107 (1991).

Krogh, C., Glud, J. A. & Jakobsen, J. Modeling the robotic manipu-
lation of woven carbon fiber prepreg plies onto double curved molds:
A path-dependent problem. Journal of Composite Materials 53, 2149—
2164. doi:10.1177/0021998318822722 (2019).

Volino, P., Magnenat-Thalmann, N. & Faure, F. A simple approach to
nonlinear tensile stiffness for accurate cloth simulation (2009).
Tamstorf, R. & Grinspun, E. Discrete bending forces and their Jaco-
bians. Graphical models 75, 362-370 (2013).

Ng, H. N. & Grimsdale, R. L. Computer graphics techniques for model-
ing cloth. IEEE Computer Graphics and Applications 16, 28-41 (1996).
Elkington, M., Ward, C. & Sarkytbayev, A. Automated composite drap-
ing: a review in SAMPE 2017 (SAMPE North America, 2017).
Sharma, S. B. & Sutcliffe, M. P. F. Draping of woven fabrics: Progressive
drape model. Plastics, Rubber and Composites 32, 57-64. doi:10.1179/
146580103225009149 (2003).

Hancock, S. G. & Potter, K. D. The use of kinematic drape modelling to
inform the hand lay-up of complex composite components using woven
reinforcements. Composites Part A: Applied Science and Manufacturing
37, 413-422. doithttp://dx.doi.org/10.1016/j.compositesa.2005.
05.044 (2006).

Breen, D. E., House, D. H. & Getto, P. H. A physically-based particle
model of woven cloth. The Visual Computer 8, 264-277 (1992).

Breen, D. E., House, D. H. & Wozny, M. J. A particle-based model
for simulating the draping behavior of woven cloth. Teztile Research
Journal 64, 663-685 (1994).

Provot, X. et al. Deformation constraints in a mass-spring model to
describe rigid cloth behaviour in Graphics interface (1995), 147-147.

268

https://doi.org/10.1177/0021998318822722
https://doi.org/10.1179/146580103225009149
https://doi.org/10.1179/146580103225009149
https://doi.org/http://dx.doi.org/10.1016/j.compositesa.2005.05.044
https://doi.org/http://dx.doi.org/10.1016/j.compositesa.2005.05.044

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

House, D. & Breen, D. Cloth modeling and animation (CRC Press,
2000).

Kawabatra, S. The Standardization and Analysis of Hand Evaluation.
The Textile Machinery Society Japan (1980).

Baraff, D. & Witkin, A. P. Large Steps in Cloth Simulation. In Proc. of
ACM SIGGRAPH 98, 43-54 (1998).

Sin, F. S., Schroeder, D. & Barbi¢, J. Vega: Nonlinear FEM Deformable
Object Simulator. Computer Graphics 32, 38-50 (2013).

Johnson, S. G. The NLopt nonlinear-optimization package.

Runarsson, T. P. & Yao, X. Search biases in constrained evolutionary
optimization. IEEE Trans. on Systems, Man, and Cybernetics Part C:
Applications and Reviews 35, 233-243 (2005).

Da, F. & Cohen-Steiner, D. Advancing Front Surface Reconstruction.
5.0.2 (CGAL Editorial Board, 2020).

Digne, J., Morel, J. M., Souzani, C. M. & Lartigue, C. Scale space
meshing of raw data point sets. Computer Graphics Forum 30, 1630—
1642 (2011).

Macklin, M. Warp: A High-performance Python Framework for GPU
Simulation and Graphics https://github.com/nvidia/warp. NVIDIA
GPU Technology Conference (GTC). 2022.

Hu, Y., Li, T.-M., Anderson, L., Ragan-Kelley, J. & Durand, F. Taichi:
a language for high-performance computation on spatially sparse data
structures. ACM Transactions on Graphics (TOG) 38, 201 (2019).
Liu, F., Su, E., Lu, J., Li, M. & Yip, M. C. Robotic Manipulation of
Deformable Rope-Like Objects Using Differentiable Compliant Position-
Based Dynamics. IEEE Robotics and Automation Letters 8, 3964-3971.
doi:10.1109/LRA.2023.3264766 (2023).

Liang, J., Lin, M. & Koltun, V. Differentiable Cloth Simulation for In-
verse Problems in Advances in Neural Information Processing Systems
32 (Curran Associates, Inc., 2019).

Li, Y., Du, T., Wu, K., Xu, J. & Matusik, W. DiffCloth: Differentiable
Cloth Simulation with Dry Frictional Contact. ACM Trans. Graph. 42.
doi:10.1145/3527660 (2022).

Huang, Z., Hu, Y., Du, T., Zhou, S., Su, H., Tenenbaum, J. B., et
al. PlasticineLab: A Soft-Body Manipulation Benchmark with Differen-
tiable Physics in International Conference on Learning Representations
(2021).

Heiden, E., Macklin, M., Narang, Y. S., Fox, D., Garg, A. & Ramos,
F. DiSECt: A Differentiable Simulation Engine for Autonomous Robotic
Cutting in Proceedings of Robotics: Science and Systems (Virtual, 2021).
doi:10.15607/RSS.2021.XVII.067.

Lin, X., Wang, Y., Olkin, J. & Held, D. SoftGym: Benchmarking Deep
Reinforcement Learning for Deformable Object Manipulation in Confer-
ence on Robot Learning (2020).

269

https://github.com/nvidia/warp
https://doi.org/10.1109/LRA.2023.3264766
https://doi.org/10.1145/3527660
https://doi.org/10.15607/RSS.2021.XVII.067

42.

43.

44.

45.

46.

47.

48.

49.

50.

ol.

52.

Chen, S., Xu, Y., Yu, C., Li, L., Ma, X., Xu, Z., et al. DaxBench: Bench-
marking Deformable Object Manipulation with Differentiable Physics
in The Eleventh International Conference on Learning Representations
(2023).

Liu, M., Yang, G., Luo, S. & Shao, L. Soft MAC: Differentiable Soft Body
Stmulation with Forecast-based Contact Model and Two-way Coupling
with Articulated Rigid Bodies and Clothes in 2024 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS) (2024),
12008-12015. doi:10.1109/IR0S58592.2024.10801308.

Hu, Y., Fang, Y., Ge, Z., Qu, Z., Zhu, Y., Pradhana, A., et al. A moving
least squares material point method with displacement discontinuity and
two-way rigid body coupling. ACM Transactions on Graphics (TOG)
37, 1-14 (2018).

Macklin, M., Miiller, M. & Chentanez, N. XPBD: position-based sim-
ulation of compliant constrained dynamics in Proceedings of the 9th
International Conference on Motion in Games (Association for Com-
puting Machinery, Burlingame, California, 2016), 49-54. doi:10.1145/
2994258 .2994272.

Murthy, J. K., Macklin, M., Golemo, F., Voleti, V., Petrini, L., Weiss,
M., et al. gradSim: Differentiable simulation for system identification
and visuomotor control in International Conference on Learning Repre-
sentations (2021).

Qiao, Y.-L., Liang, J., Koltun, V. & Lin, M. Scalable Differentiable
Physics for Learning and Control in Proceedings of the 37th Interna-
tional Conference on Machine Learning 119 (PMLR, 2020), 7847—7856.
Hu, Y., Anderson, L., Li, T.-M., Sun, Q., Carr, N., Ragan-Kelley, J.,
et al. DiffTaichi: Differentiable Programming for Physical Simulation in
International Conference on Learning Representations (2020).
Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch, I. & Bachem,
O. Brax - A Differentiable Physics Engine for Large Scale Rigid Body
Simulation in Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1) (2021).
Sundaresan, P., Antonova, R. & Bohgl, J. DiffCloud: Real-to-Sim from
Point Clouds with Differentiable Simulation and Rendering of Deformable
Objects in 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (2022), 10828-10835. doi:10.1109/IR0S47612 .
2022.9981101.

Blanco-Mulero, D., Barbany, O., Alcan, G., Colomé, A., Torras, C. &
Kyrki, V. Benchmarking the Sim-to-Real Gap in Cloth Manipulation.
IEEE Robotics and Automation Letters 9, 2981-2988. doi:10.1109/
LRA.2024.3360814 (2024).

Yan, W., Vangipuram, A., Abbeel, P. & Pinto, L. Learning predictive
representations for deformable objects using contrastive estimation in
Conference on Robot Learning (2021), 564-574.

270

https://doi.org/10.1109/IROS58592.2024.10801308
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1109/IROS47612.2022.9981101
https://doi.org/10.1109/IROS47612.2022.9981101
https://doi.org/10.1109/LRA.2024.3360814
https://doi.org/10.1109/LRA.2024.3360814

53.

54.

95.

56.

o7.

58.

59.

60.

61.

62.

63.

Seita, D., Florence, P., Tompson, J., Coumans, E., Sindhwani, V., Gold-
berg, K., et al. Learning to Rearrange Deformable Cables, Fabrics, and
Bags with Goal-Conditioned Transporter Networks in 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA) (2021), 4568
4575. doi:10.1109/ICRA48506.2021.9561391.

Chen, S., Liu, Y., Yao, S. W., Li, J., Fan, T. & Pan, J. DiffSRL: Learning
Dynamical State Representation for Deformable Object Manipulation
With Differentiable Simulation. IEEE Robotics and Automation Letters
7, 9533-9540. doi:10.1109/LRA.2022.3192209 (2022).

Qi, C., Lin, X. & Held, D. Learning Closed-Loop Dough Manipulation
Using a Differentiable Reset Module. IEEE Robotics and Automation
Letters 7, 9857-9864. doi:10.1109/LRA.2022.3191239 (2022).

Shi, H., Xu, H., Huang, Z., Li, Y. & Wu, J. RoboCraft: Learning to see,
simulate, and shape elasto-plastic objects in 3D with graph networks.
The International Journal of Robotics Research 43, 533-549. doi:10.
1177/02783649231219020 (2024).

Kuroki, S., Guo, J., Matsushima, T., Okubo, T., Kobayashi, M., Ikeda,
Y., et al. GenDOM: Generalizable One-shot Deformable Object Ma-
nipulation with Parameter-Aware Policy in 2024 IEEE International
Conference on Robotics and Automation (ICRA) (2024), 14792-14799.
do0i:10.1109/ICRA57147.2024.10611378.

Zhang, Y., Liu, F., Liang, X. & Yip, M. Achieving Autonomous Cloth
Manipulation with Optimal Control via Differentiable Physics-Aware
Regularization and Safety Constraints in 2024 IEEE International Con-
ference on Robotics and Automation (ICRA) (2024), 9931-9938. doi:10.
1109/ICRA57147.2024.10611111.

Shukla, R., Yu, Z., Moode, S., Manyar, O. M., Wang, F., Mayya, S.,
et al. Performing Efficient and Safe Deformable Package Transport Op-
erations Using Suction Cups in 2024 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS) (2024), 11835-11842.
do0i:10.1109/IR0S58592.2024.10802323.

Bridson, R., Fedkiw, R. & Anderson, J. Robust treatment of collisions,
contact and friction for cloth animation. ACM Transactions on Graphics
(TOG) 21, 594-603 (2002).

Smith, B., Goes, F. D. & Kim, T. Stable Neo-Hookean Flesh Simula-
tion. ACM Transactions on Graphics (TOG) 37. doi:10.1145/3180491
(2018).

Deepmind. MuJoCo XLA (MJX) https://mujoco.readthedocs.io/
en/stable/mjx.html. [Accessed 03-03-2025]. 2023.

Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H. & Deng, S.-H.
Hyperparameter Optimization for Machine Learning Models Based on
Bayesian Optimization. Journal of Electronic Science and Technology
17, 26-40. doi:https://doi . org/10.11989 / JEST . 1674 - 862X .
80904120 (2019).

271

https://doi.org/10.1109/ICRA48506.2021.9561391
https://doi.org/10.1109/LRA.2022.3192209
https://doi.org/10.1109/LRA.2022.3191239
https://doi.org/10.1177/02783649231219020
https://doi.org/10.1177/02783649231219020
https://doi.org/10.1109/ICRA57147.2024.10611378
https://doi.org/10.1109/ICRA57147.2024.10611111
https://doi.org/10.1109/ICRA57147.2024.10611111
https://doi.org/10.1109/IROS58592.2024.10802323
https://doi.org/10.1145/3180491
https://mujoco.readthedocs.io/en/stable/mjx.html
https://mujoco.readthedocs.io/en/stable/mjx.html
https://doi.org/https://doi.org/10.11989/JEST.1674-862X.80904120
https://doi.org/https://doi.org/10.11989/JEST.1674-862X.80904120

64.

65.

66.

67.

68.

69.

70.

T1.

72.

73.

74.

75.

76.

e

Srinivasan, K., Heiden, E., Ng, 1., Bohg, J. & Garg, A. DexMOTS:
Learning Contact-Rich Dexterous Manipulation in an Object-Centric
Task Space with Differentiable Stmulation in International Symposium
of Robotics Research (ISRR) (2024).

Makoviichuk, D. & Makoviychuk, V. rl-games: A High-performance Frame-

work for Reinforcement Learning https://github.com/Denys88/rl_
games. 2021.

Nogueira, F. Bayesian Optimization: Open source constrained global op-
timization tool for Python 2014.

Wu, T., Pan, L., Zhang, J., Wang, T., Liu, Z. & Lin, D. Density-aware
chamfer distance as a comprehensive metric for point cloud completion
in Proceedings of the 35th International Conference on Neural Informa-
tion Processing Systems (2021), 29088-29100.

Zhang, K., Li, B., Hauser, K. & Li, Y. AdaptiGraph: Material-Adaptive
Graph-Based Neural Dynamics for Robotic Manipulation in Proceedings
of Robotics: Science and Systems (Delft, Netherlands, 2024). doi:10.
15607 /RSS.2024.XX.010.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G.
The graph neural network model. IEEFE transactions on neural networks
20, 61-80 (2008).

Li, Y., Wu, J., Tedrake, R., Tenenbaum, J. B. & Torralba, A. Learn-
ing Particle Dynamics for Manipulating Rigid Bodies, Deformable Ob-
jects, and Fluids in International Conference on Learning Representa-
tions (2019).

Liu, Z., Zhou, G., He, J., Marcucci, T., Li, F.-F., Wu, J., et al. Model-
based control with sparse neural dynamics. Advances in Neural Infor-
mation Processing Systems 36, 6280-6296 (2023).

Shi, H., Xu, H., Clarke, S., Li, Y. & Wu, J. RoboCook: Long-Horizon
Elasto-Plastic Object Manipulation with Diverse Tools in Conference on
Robot Learning (2023), 642-660.

Shi, H., Xu, H., Huang, Z., Li, Y. & Wu, J. Robocraft: Learning to see,
simulate, and shape elasto-plastic objects in 3d with graph networks.
The International Journal of Robotics Research 43, 533-549 (2024).
Lin, X., Huang, Z., Li, Y., Tenenbaum, J. B., Held, D. & Gan, C. Diff-
Skill: Skill Abstraction from Differentiable Physics for Deformable Ob-
ject Manipulations with Tools in International Conference on Learning
Representations (ICLR) (2022).

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. & Yu, P. S. A compre-
hensive survey on graph neural networks. IEEE transactions on neural
networks and learning systems 32, 4-24 (2020).

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zam-
baldi, V., Malinowski, M., et al. Relational inductive biases, deep learn-
ing, and graph networks. arXiv preprint arXiv:1806.01261 (2018).
Wellner, P., Reyes, V., Ashton, H. & Moutray, C. Creating pathways for
tomorrow’s workforce today. Beyond reskilling in manufacturing https:

272

https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games
https://doi.org/10.15607/RSS.2024.XX.010
https://doi.org/10.15607/RSS.2024.XX.010
https://www2.deloitte.com/us/en/insights/industry/manufacturing/manufacturing-industry-diversity.html
https://www2.deloitte.com/us/en/insights/industry/manufacturing/manufacturing-industry-diversity.html

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

//www2.deloitte.com/us/en/insights/industry/manufacturing/
manufacturing-industry-diversity.html (2021).

Manyar, O. M., Cheng, J., Levine, R., Krishnan, V., Barbic, J. & Gupta,
S. K. A Synthetic Image Assisted Deep Learning Framework for De-
tecting Defects during Composite Sheet Layup in 42nd Computers and
Information in Engineering Conference (CIE) (2022).

Malhan, R. K., Jomy Joseph, R., Shembekar, A. V., Kabir, A. M.,
Bhatt, P. M. & Gupta, S. K. Online Grasp Plan Refinement for Re-
ducing Defects During Robotic Layup of Composite Prepreg Sheets in
IEEE International Conference on Robotics and Automation (ICRA)
(Paris, France, 2020).

Atkeson, C. G. & Schaal, S. Robot Learning From Demonstration in
ICML (1997).

Arora, S. & Doshi, P. A survey of inverse reinforcement learning: Chal-
lenges, methods and progress. Artificial Intelligence 297, 103500 (2021).
Ziebart, B. D., Maas, A., Bagnell, J. A. & Dey, A. K. Mazimum En-
tropy Inverse Reinforcement Learning in Proceedings of the 23rd Na-
tional Conference on Artificial Intelligence - Volume 8 (AAAI Press,
Chicago, Illinois, 2008), 1433-1438.

Ramachandran, D. & Amir, E. Bayesian Inverse Reinforcement Learn-
ing in Proceedings of the 20th International Joint Conference on Artifi-
cal Intelligence (Morgan Kaufmann Publishers Inc., Hyderabad, India,
2007), 2586—2591.

Levine, S., Popovic, Z. & Koltun, V. Nonlinear Inverse Reinforcement
Learning with Gaussian Processes in Advances in Neural Information
Processing Systems (eds Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira,
F. & Weinberger, K.) 24 (Curran Associates, Inc., 2011).

Ratliff, N. D., Bagnell, J. A. & Zinkevich, M. A. Mazimum Margin Plan-
ning in Proceedings of the 23rd International Conference on Machine
Learning (Association for Computing Machinery, Pittsburgh, Pennsyl-
vania, USA, 2006), 729-736. doi:10.1145/1143844.1143936.

Bagnell, J., Chestnutt, J., Bradley, D. & Ratliff, N. Boosting Structured
Prediction for Imitation Learning in Advances in Neural Information
Processing Systems (eds Scholkopf, B., Platt, J. & Hoffman, T.) 19
(MIT Press, 2006).

Sadigh, D., Dragan, A. D., Sastry, S. S. & Seshia, S. A. Active Preference-
Based Learning of Reward Functions in Robotics: Science and Systems
(2017).

Basu, C., Biyik, E., He, Z., Singhal, M. & Sadigh, D. Active Learning
of Reward Dynamics from Hierarchical Queries in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2019). doi:10.1109/IR0S40897 .2019 .8968522.

Biyik, E., Losey, D. P., Palan, M., Landolfi, N. C., Shevchuk, G. &
Sadigh, D. Learning Reward Functions from Diverse Sources of Hu-
man Feedback: Optimally Integrating Demonstrations and Preferences.

273

https://www2.deloitte.com/us/en/insights/industry/manufacturing/manufacturing-industry-diversity.html
https://www2.deloitte.com/us/en/insights/industry/manufacturing/manufacturing-industry-diversity.html
https://www2.deloitte.com/us/en/insights/industry/manufacturing/manufacturing-industry-diversity.html
https://doi.org/10.1145/1143844.1143936
https://doi.org/10.1109/IROS40897.2019.8968522

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

The International Journal of Robotics Research (IJRR). doi:10.1177/
02783649211041652(2021)

Nikolaidis, S., Ramakrishnan, R., Gu, K. & Shah, J. Efficient model
learning from joint-action demonstrations for human-robot collabora-
tive tasks in Proceedings of the ACM/IEEE International Conference
on Human-Robot Interaction (HRI) (2015).

Nemlekar, H., Modi, J., Gupta, S. K. & Nikolaidis, S. Two-Stage Clus-
tering of Human Preferences for Action Prediction in Assembly Tasks
in 2021 IEEE International Conference on Robotics and Automation
(ICRA) (2021), 3487-3494. doi:10.1109/ICRA48506.2021 . 9561649.
Nemlekar, H., Guan, R., Luo, G., Gupta, S. K. & Nikolaidis, S. Towards
Transferring Human Preferences from Canonical to Actual Assembly
Tasks doi:10.48550/ARXIV.2111.06454.

Wu, Z., Lian, W., Unhelkar, V., Tomizuka, M. & Schaal, S. Learn-
ing Dense Rewards for Contact-Rich Manipulation Tasks in 2021 IEEE
International Conference on Robotics and Automation (ICRA) (2021),
6214-6221. doi:10.1109/ICRA48506.2021.9561891.

Zhang, X., Sun, L., Kuang, Z. & Tomizuka, M. Learning Variable Impedance

Control via Inverse Reinforcement Learning for Force-Related Tasks .

IEEE Robotics and Automation Letters 6, 2225-2232. doi:10.1109/

LRA.2021.3061374 (2021).

Sugisawa, Y., Takasugi, K. & Asakawa, N. Machining sequence learning

via inverse reinforcement learning. Precision Engineering 73, 477-487.

doi:https://doi.org/10.1016/j.precisioneng.2021.09.017 (2022).

Peternel, L., Petri¢, T. & Babi¢, J. Human-in-the-loop approach for
teaching robot assembly tasks using impedance control interface in 2015
IEEE International Conference on Robotics and Automation (ICRA)

(2015), 1497-1502. doi:10.1109/ICRA.2015.7139387.

Ng, C. W. X., Chan, K. H. K., Teo, W. K. & Chen, I.-M. A method
for capturing the tacit knowledge in the surface finishing skill by demon-

stration for programming a robot in 2014 IEEE International Conference
on Robotics and Automation (ICRA) (2014), 1374-1379. doi:10.1109/

ICRA.2014.6907031.

Ng, W. X., Chan, H. K., Teo, W. K. & Chen, [.-M. Programming a

Robot for Conformance Grinding of Complex Shapes by Capturing the

Tacit Knowledge of a Skilled Operator. IEEE Transactions on Automa-

tion Science and Engineering 14, 1020-1030. doi:10.1109/TASE.2015.

2474708 (2017).

Hu, J., Kabir, A. M., Hartford, S. M., Gupta, S. K. & Pagilla, P. R.

Robotic deburring and chamfering of complex geometries in high-miz/low-
volume production applications in 2020 IEEE 16th International Con-

ference on Automation Science and Engineering (CASE) (2020), 1155

1160. doi:10.1109/CASE48305.2020.9217042.

274

https://doi.org/10.1177/02783649211041652
https://doi.org/10.1177/02783649211041652
https://doi.org/10.1109/ICRA48506.2021.9561649
https://doi.org/10.48550/ARXIV.2111.06454
https://doi.org/10.1109/ICRA48506.2021.9561891
https://doi.org/10.1109/LRA.2021.3061374
https://doi.org/10.1109/LRA.2021.3061374
https://doi.org/https://doi.org/10.1016/j.precisioneng.2021.09.017
https://doi.org/10.1109/ICRA.2015.7139387
https://doi.org/10.1109/ICRA.2014.6907031
https://doi.org/10.1109/ICRA.2014.6907031
https://doi.org/10.1109/TASE.2015.2474708
https://doi.org/10.1109/TASE.2015.2474708
https://doi.org/10.1109/CASE48305.2020.9217042

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

Abbeel, P. & Ng, A. Y. Apprenticeship Learning via Inverse Reinforce-
ment Learning in Proceedings of the Twenty-First International Con-
ference on Machine Learning (Association for Computing Machinery,
Banff, Alberta, Canada, 2004), 1. doi:10.1145/1015330.1015430.
Myers, R. H. & Montgomery, D. C. Response Surface Methodology: Pro-
cess and Product in Optimization Using Designed Ezperiments 1st (John
Wiley & Sons, Inc., USA, 1995).

Taskar, B., Chatalbashev, V., Koller, D. & Guestrin, C. Learning Struc-
tured Prediction Models: A Large Margin Approach in Proceedings of the
22nd International Conference on Machine Learning (Association for
Computing Machinery, Bonn, Germany, 2005), 896-903. doi:10.1145/
1102351.1102464.

Bertsekas, D. P. Conver Optimization Algorithms. The Science of Mi-
crofabrication (Athena Scientific, Belmont, Massachusetts, 2016).
Amin, K., Jiang, N. & Singh, S. Repeated Inverse Reinforcement Learn-
ing in Advances in Neural Information Processing Systems (eds Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., et al.) 30 (Curran Associates, Inc., 2017).

Attene, M., Falcidieno, B. & Spagnuolo, M. Hierarchical Mesh Segmen-
tation Based on Fitting Primitives. Vis. Comput. 22, 181-193. doi:10.
1007/s00371-006-0375-x (2006).

Malhan, R. K., Shembekar, A. V., Kabir, A. M., Bhatt, P. M., Shah,
B., Zanio, S., et al. Automated planning for robotic layup of composite
prepreg. Robotics and Computer-Integrated Manufacturing 67, 102020.
Newell, G. & Khodabandehloo, K. Modelling flexible sheets for auto-
matic handling and lay-up of composite components. Proceedings of the
Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture 209, 423-432 (1995).

Krogh, C., Glud, J. A. & Jakobsen, J. Modeling the robotic manipu-
lation of woven carbon fiber prepreg plies onto double curved molds:
A path-dependent problem. Journal of Composite Materials 53, 2149—
2164 (2019).

Elkington, M., Bloom, D., Ward, C., Chatzimichali, A. & Potter, K.
Hand layup: understanding the manual process. Advanced Manufactur-
ing: Polymer & Composites Science 1, 138151 (2015).

Buckingham, R. O. & Newell, G. C. Automating the manufacture of
composite broadgoods. Composites Part A: Applied Science and Man-
ufacturing 27, 191-200. doi:http://dx.doi.org/10.1016/1359 -
835X (96)80001-9 (1996).

Molfino, R., Zoppi, M., Cepolina, F., Yousef, J. & Cepolina, E. E. De-
sign of a Hyper-flexible cell for handling 3D Carbon fiber fabric. Recent
advances in mechanical engineering and mechanics 165 (2014).
Elkington, M., Ward, C. & Potter, K. D. Automated layup of sheet
prepregs on complex moulds in SAMPE Long Beach Conference (2016).

275

https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1102351.1102464
https://doi.org/10.1145/1102351.1102464
https://doi.org/10.1007/s00371-006-0375-x
https://doi.org/10.1007/s00371-006-0375-x
https://doi.org/http://dx.doi.org/10.1016/1359-835X(96)80001-9
https://doi.org/http://dx.doi.org/10.1016/1359-835X(96)80001-9

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

Seliger, G., Szimmat, F., Niemeier, J. & Stephan, J. Automated han-
dling of non-rigid parts. CIRP Annals 52, 21-24 (2003).

Fantoni, G., Santochi, M., Dini, G., Tracht, K., Scholz-Reiter, B., Fleis-
cher, J.; et al. Grasping devices and methods in automated production
processes. CIRP Annals 63, 679-701 (2014).

Manyar, O. M., Kanyuck, A., Deshkulkarni, B. & Gupta, S. K. Vi-
sual servo based trajectory planning for fast and accurate sheet pick and
place operations in International Manufacturing Science and Engineer-
ing Conference 85802 (2022), V0O01T04A019.

Bjornsson, A., Jonsson, M. & Johansen, K. Automated material han-
dling in composite manufacturing using pick-and-place systems — a re-
view 2018.

Elkington., M., Ward, C. & Sarkytbayev, A. Automated composite drap-
ing: a review in SAMPE (SAMPE North America, 2017).

Peng, Z. & Yuanchun, L. Position/force control of two manipulators
handling a flexible payload based on finite-element model in IEEE In-
ternational Conference on Robotics and Biomimetics (ROBIO) (2007),
2178-2182. doi:10.1109/R0OBI0. 2007 .4522507.

Zhang, P. & c. Li, Y. Simulations and Trajectory Tracking of Two
Manipulators Manipulating a Flexible Payload in IEEE Conference on
Robotics, Automation and Mechatronics (2008), 72-77. doi:10.1109/
RAMECH.2008.4681323.

Tzeranis, D., Ishijima, Y. & Dubowsky, S. Manipulation of Large Flex-
ible Structural Modules By Space Robots Mounted on Flexible Struc-
tures. Proc. Int. Sym. on Artificial Intelligence, Robotics and Automa-
tion in Space (2005).

Das, J. & Sarkar, N. Autonomous Shape Control of a Deformable Object
by Multiple Manipulators. Journal of Intelligent € Robotic Systems 62,
3-27. d0i:10.1007/s10846-010-9436-5 (2011).

Henrich, D. & Woérn, H. Robot Manipulation of Deformable Objects
(Springer Science & Business Media, 2012).

Ding, F., Huang, J., Wang, Y., Matsuno, T. & Fukuda, T. Vibra-
tion damping in manipulation of deformable linear objects using sliding
mode control. Advanced Robotics 28, 157-172. doi:10.1080/01691864.
2013.861769 (2014).

Alonso-Mora, J., Knepper, R., Siegwart, R. & Rus, D. Local motion
planning for collaborative multi-robot manipulation of deformable objects
in IEEFE International Conference on Robotics and Automation (ICRA)
(2015), 5495-5502.

Kruse, D., Radke, R. J. & Wen, J. T. Human-robot collaborative handling
of highly deformable materials in American Control Conference (ACC)
(2017), 1511-1516. doi:10.23919/ACC.2017.7963167.

Tsarouchi, P., Spiliotopoulos, J., Michalos, G., Koukas, S., Athanasatos,
A., Makris, S., et al. A decision making framework for human robot
collaborative workplace generation. Procedia CIRP 44, 228-232 (2016).

276

https://doi.org/10.1109/ROBIO.2007.4522507
https://doi.org/10.1109/RAMECH.2008.4681323
https://doi.org/10.1109/RAMECH.2008.4681323
https://doi.org/10.1007/s10846-010-9436-5
https://doi.org/10.1080/01691864.2013.861769
https://doi.org/10.1080/01691864.2013.861769
https://doi.org/10.23919/ACC.2017.7963167

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

Gunnarsson, G. G., Nielsen, O. W., Schlette, C. & Petersen, H. G.
Fast and simple interacting models of drape tool and ply material for
handling free hanging, pre-impregnated carbon fibre material in Interna-
tional Conference on Informatics in Control, Automation and Robotics
(2018), 1-25.

Khalil, F. F. & Payeur, P. in Robot Manipulators Trends and Develop-
ment (InTech, 2010).

Jiménez, P. Survey on model-based manipulation planning of deformable
objects. Robotics and computer-integrated manufacturing 28, 154-163
(2012).

Moll, M. & Kavraki, L. E. Path planning for deformable linear objects.
IEEE Transactions on Robotics 22, 625-636 (2006).

Saha, M. & Isto, P. Manipulation Planning for Deformable Linear Ob-
jects. IEEE Transactions on Robotics 23, 1141-1150. doi:10.1109/TRO.
2007.907486 (2007).

Roussel, O., Borum, A., Taix, M. & Bretl, T. Manipulation planning with
contacts for an extensible elastic rod by sampling on the submanifold of
static equilibrium configurations in IEEE International Conference on
Robotics and Automation (ICRA) (2015), 3116-3121.
Papacharalampopoulos, A., Makris, S., Bitzios, A. & Chryssolouris, G.
Prediction of cabling shape during robotic manipulation. The Inter-
national Journal of Advanced Manufacturing Technology 82, 123-132
(2016).

Saha, M. & Isto, P. Motion planning for robotic manipulation of de-
formable linear objects in IEEE International Conference on Robotics
and Automation (2006), 2478-2484. doi:10.1109/R0BOT. 2006 . 1642074.
Wakamatsu, H., Arai, E. & Hirai, S. Knotting/Unknotting Manipulation
of Deformable Linear Objects. The International Journal of Robotics
Research 25, 371-395. doi:10.1177/0278364906064819 (2006).

Ladd, A. M. & Kavraki, L. E. Using Motion Planning for Knot Un-
tangling. The International Journal of Robotics Research 23, 797-808.
doi:10.1177/0278364904045469 (2004).

Matsuno, T., Fukuda, T. & Arai, F. Flexible rope manipulation by
dual manipulator system wusing vision sensor in IEEE/ASME Inter-
national Conference on Advanced Intelligent Mechatronics. Proceedings
(Cat. No.01TH8556) 2 (2001), 677-682 vol.2. doi:10.1109/AIM.2001.
936748.

Berenson, D. Manipulation of deformable objects without modeling and
simulating deformation in IEEE/RSJ International Conference on In-
telligent Robots and Systems (2013), 4525-4532. doi:10 . 1109/ IR0OS .
2013.6697007.

Li, Y., Yue, Y., Xu, D., Grinspun, E. & Allen, P. K. Folding deformable
objects using predictive simulation and trajectory optimization in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2015), 6000—-6006.

277

https://doi.org/10.1109/TRO.2007.907486
https://doi.org/10.1109/TRO.2007.907486
https://doi.org/10.1109/ROBOT.2006.1642074
https://doi.org/10.1177/0278364906064819
https://doi.org/10.1177/0278364904045469
https://doi.org/10.1109/AIM.2001.936748
https://doi.org/10.1109/AIM.2001.936748
https://doi.org/10.1109/IROS.2013.6697007
https://doi.org/10.1109/IROS.2013.6697007

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

Doumanoglou, A., Stria, J., Peleka, G., Mariolis, I., Petrik, V., Kar-
gakos, A., et al. Folding Clothes Autonomously: A Complete Pipeline.
IEEE Transactions on Robotics 32, 1461-1478. doi:10.1109/TR0.2016.
2602376 (2016).

Maitin-Shepard, J., Cusumano-Towner, M., Lei, J. & Abbeel, P. Cloth
grasp point detection based on multiple-view geometric cues with ap-
plication to robotic towel folding in IEEE International Conference on
Robotics and Automation (ICRA) (2010), 2308-2315.

Van Den Berg, J., Miller, S., Goldberg, K. & Abbeel, P. in Algorithmic
Foundations of Robotics IX 409-424 (Springer, 2010).
"Koustoumpardis, P. N.; Chatzilygeroudis, K. I., Synodinos, A. I. &
Aspragathos, N. A. "Human Robot Collaboration for Folding Fabrics
Based on Force/RGB-D Feedback” in "Advances in Robot Design and
Intelligent Control" ("Springer International Publishing", 2016), "235-
243",

Miller, S., Fritz, M., Darrell, T. & Abbeel, P. Parametrized shape models
for clothing in IEEE International Conference on Robotics and Automa-
tion (ICRA) (2011), 4861-4868.

Miller, S., van den Berg, J., Fritz, M., Darrell, T., Goldberg, K. &
Abbeel, P. A geometric approach to robotic laundry folding. The In-
ternational Journal of Robotics Research 31, 249-267. doi:10. 1177/
0278364911430417 (2012).

Bai, Y., Yu, W. & Liu, C. K. Dexterous manipulation of cloth. Computer
Graphics Forum 35, 523-532 (2016).

Schulman, J., Ho, J., Lee, C. & Abbeel, P. in Robotics Research: The
16th International Symposium ISRR 339-354 (Springer International
Publishing, Cham, 2016). doi:10.1007/978-3-319-28872-7_20.
McConachie, D. & Berenson, D. Bandit-based model selection for de-
formable object manipulation. arXiv preprint arXiv:1703.10254 (2017).
McConachie, D., Ruan, M. & Berenson, D. Interleaving planning and
control for deformable object manipulation in International Symposium
on Robotics Research (ISRR) (2017).

Koganti, N., Tamei, T., Ikeda, K. & Shibata, T. Bayesian Nonparamet-
ric Learning of Cloth Models for Real-Time State Estimation. IEEE
Transactions on Robotics 33, 916-931. doi:10.1109/TR0.2017.2691721
(2017).

Flixeder, S., Glick, T. & Kugi, A. Modeling and force control for the
collaborative manipulation of deformable strip-like materials. [FAC-
PapersOnLine 49, 95-102 (2016).

Kruse, D., Radke, R. J. & Wen, J. T. Collaborative human-robot manip-
ulation of highly deformable materials in IEEE International Conference
on Robotics and Automation (ICRA) (2015), 3782-3787. doi:10.1109/
ICRA.2015.7139725.

278

https://doi.org/10.1109/TRO.2016.2602376
https://doi.org/10.1109/TRO.2016.2602376
https://doi.org/10.1177/0278364911430417
https://doi.org/10.1177/0278364911430417
https://doi.org/10.1007/978-3-319-28872-7_20
https://doi.org/10.1109/TRO.2017.2691721
https://doi.org/10.1109/ICRA.2015.7139725
https://doi.org/10.1109/ICRA.2015.7139725

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

Hu, Z., Sun, P. & Pan, J. Three-dimensional deformable object ma-
nipulation using fast online gaussian process regression. Robotics and
Automation Letters 3, 979-986 (2018).

Yang, P.-C., Sasaki, K., Suzuki, K., Kase, K., Sugano, S. & Ogata, T.
Repeatable folding task by humanoid robot worker using deep learning.
Robotics and Automation Letters 2, 397-403 (2017).

Zienkiewicz, O. C. The Finite Element Method (McGraw-Hill Book
Company (UK) Limited, Maidenhead, Berkshire, England, 1977).
Wang, H., O’Brien, J. F. & Ramamoorthi, R. Data-driven elastic models
for cloth: modeling and measurement. ACM Transactions on Graphics
(SIGGRAPH 2011) 30, 71:1-71:12 (2011).

Lee, A. X., Huang, S. H., Hadfield-Menell, D., Tzeng, E. & Abbeel, P.
Unifying scene registration and trajectory optimization for learning from
demonstrations with application to manipulation of deformable objects in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(2014), 4402-4407. doi:10.1109/IR0S.2014.6943185.

Lee, A. X., Lu, H., Gupta, A., Levine, S. & Abbeel, P. Learning force-
based manipulation of deformable objects from multiple demonstrations
in 2015 IEEE International Conference on Robotics and Automation
(ICRA) (2015), 177-184. doi:10.1109/ICRA.2015.7138997.

Huang, S. H., Pan, J., Mulcaire, G. & Abbeel, P. Leveraging appearance
priors in non-rigid registration, with application to manipulation of de-
formable objects in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2015), 878-885. doi:10.1109/IR0S.2015.
7353475.

Malhan, R. K., Kabir, A. M., Shah, B., Centea, T. & Gupta, S. K.
Hybrid cells for multi-layer prepreg composite sheet layup. IEEFE Inter-
national Conference on Automation Science and Engineering (CASE).
Munich, Germany. (2018).

Malhan, R., Kabir, A., Shah, B., Centea, T. & Gupta, S. Automated
prepreg sheet placement using collaborative robotics in North America
Society for the Advancement of Material and Process Engineering (
SAMPE) Long beach conference (2018).

Yoshikawa, T. Manipulability of Robotic Mechanisms. The International
Journal of Robotics Research 4, 3-9. doi:10.1177/027836498500400201
(1985).

Pan, J., Chitta, S. & Manocha, D. FCL: A general purpose library for
collision and proximity queries in 2012 IEEE International Conference
on Robotics and Automation (2012), 3859-3866. doi:10.1109/ICRA.
2012.6225337.

Chung, M. K., Lee, I. & Yeo, Y. S. Physiological workload evaluation of
screw driving tasks in automobile assembly jobs. International Journal
of Industrial Ergonomics 28. 5th Pan-Pacific Conference on Occupa-
tional Ergonomics, 181-188. doichttps://doi.org/10.1016/S0169-
8141(01)00031-2 (2001).

279

https://doi.org/10.1109/IROS.2014.6943185
https://doi.org/10.1109/ICRA.2015.7138997
https://doi.org/10.1109/IROS.2015.7353475
https://doi.org/10.1109/IROS.2015.7353475
https://doi.org/10.1177/027836498500400201
https://doi.org/10.1109/ICRA.2012.6225337
https://doi.org/10.1109/ICRA.2012.6225337
https://doi.org/https://doi.org/10.1016/S0169-8141(01)00031-2
https://doi.org/https://doi.org/10.1016/S0169-8141(01)00031-2

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

Zhang, D., Leng, J., Xie, M., Yan, H. & Liu, Q. Digital twin enabled
optimal reconfiguration of the semi-automatic electronic assembly line
with frequent changeovers. Robotics and Computer-Integrated Manufac-
turing 77, 102343. doihttps://doi.org/10.1016/j.rcim.2022.
102343 (2022).

Jia, Z., Bhatia, A., Aronson, R. M., Bourne, D. & Mason, M. T. A
Survey of Automated Threaded Fastening. IEEE Transactions on Au-
tomation Science and Engineering 16, 298-310. doi:10. 1109/ TASE.
2018.2835382 (2019).

Lara, B., Althoefer, K. & Seneviratne, L. D. Automated robot-based
screw insertion system in IECON’98. Proceedings of the 24th Annual

Conference of the IEEFE Industrial Electronics Society (Cat. No. 98CH36200

) 4 (1998), 2440-2445.

Warnecke, H., Abele, E., Walther, J. & Fischer, G. Investigations of
the Screw Driving Process with Sensor-Controlled Industrial Robots.
CIRP Annals 34, 41-44. doi:https://doi . org/10.1016/S0007 -
8506(07)61719-3 (1985).

Nicolson, E. & Fearing, R. Dynamic modeling of a part mating problem:
threaded fastener insertion in Proceedings IROS "91:1EEE/RSJ Inter-
national Workshop on Intelligent Robots and Systems 91 (1991), 30-37
vol.1. doi:10.1109/IR0S.1991.174422.

Han, S., Choi, M.-S., Shin, Y.-W., Jang, G.-R., Lee, D.-H., Cho, J., et
al. Screwdriving Gripper That Mimics Human Two-Handed Assembly
Tasks. Robotics 11. doi:10.3390/robotics11010018 (2022).

Hu, Z., Wan, W., Koyama, K. & Harada, K. A Mechanical Screwing
Tool for Parallel Grippers—Design, Optimization, and Manipulation
Policies. IEEFE Transactions on Robotics 38, 1139-1159. doi:10.1109/
TRO.2021.3091282 (2022).

Hwang, J.-Y., Jung, D.-H., Roh, Y.-J., Nam, K.-J. & Hwang, D.-Y.
Low-cost automatic screw machine using a commercial electric screw-
driver in 2012 12th International Conference on Control, Automation
and Systems (2012), 1055-1060.

Watson, J., Miller, A. & Correll, N. Autonomous industrial assembly
using force, torque, and RGB-D sensing. Advanced Robotics 34, 546—
559. d0i:10.1080/01691864.2020.1715254 (2020).

Pitipong, S., Pornjit, P. & Watcharin, P. An automated four-DOF robot
screw fastening using visual servo in 2010 IEEE/SICE International
Symposium on System Integration (2010), 379-383. doi:10.1109/SII.
2010.5708355.

Liu, Z., Xie, W., Xiao, M., Zhang, Z., Jin, X. & Qin, Y. Servo control
technology for automatic screw-tightening process of robotic arm based
on multi-vision sensor. Journal of Physics: Conference Series 2819,
012031. doi:10.1088/1742-6596/2819/1/012031 (2024).

Claudia Carvalho, A., Isabel Carvalho, A. & Correia, R. Robot With Vi-
sion Guidance System for Unscrewing Operation in 2024 International

280

https://doi.org/https://doi.org/10.1016/j.rcim.2022.102343
https://doi.org/https://doi.org/10.1016/j.rcim.2022.102343
https://doi.org/10.1109/TASE.2018.2835382
https://doi.org/10.1109/TASE.2018.2835382
https://doi.org/https://doi.org/10.1016/S0007-8506(07)61719-3
https://doi.org/https://doi.org/10.1016/S0007-8506(07)61719-3
https://doi.org/10.1109/IROS.1991.174422
https://doi.org/10.3390/robotics11010018
https://doi.org/10.1109/TRO.2021.3091282
https://doi.org/10.1109/TRO.2021.3091282
https://doi.org/10.1080/01691864.2020.1715254
https://doi.org/10.1109/SII.2010.5708355
https://doi.org/10.1109/SII.2010.5708355
https://doi.org/10.1088/1742-6596/2819/1/012031

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

Conference on Decision Aid Sciences and Applications (DASA) (2024),
1-5. doi:10.1109/DASA63652.2024.10836165.

Tang, L. & Jia, Y.-B. Robotic Fastening with a Manual Screwdriver
in 2023 IEEE International Conference on Robotics and Automation
(ICRA) (2023), 5269-5275. doi:10.1109/ICRA48891.2023.10161139.
Chen, C.-H. & Chong, W.-d. Fastening torque control for robotic screw
driver under uncertain environment in 2014 14th International Confer-
ence on Control, Automation and Systems (ICCAS 2014) (2014), 814~
818. d0i:10.1109/ICCAS.2014.6987891.

Dharmara, K., Monfared, R. P., Ogun, P. S. & Jackson, M. R. Robotic
assembly of threaded fasteners in a non-structured environment. The
International Journal of Advanced Manufacturing Technology 98, 2093~
2107.dOth.1007/800170—018—2363—5(2018)

Wang, X., Shi, L. & Katupitiya, J. Robust control of a dual-arm space
robot for in-orbit screw-driving operation. Acta Astronautica 200, 139—
148. doichttps: //doi.org/10.1016/ j . actaastro. 2022 .07 . 048
(2022).

Tao, R., Jing, F., Hou, J., Xing, S., Fu, Y., Fan, J., et al. APTMRS: Au-
tonomous Prism Target Maintenance Robotic System for FAST. IFEE
Transactions on Automation Science and Engineering, 1-17. doi:10 .
1109/TASE.2024.3406772 (2024).

Nicolson, E. J. Grasp stiffness solutions for threaded insertion (Univer-
sity of California, Berkeley, 1990).

Nicolson, E. & Fearing, R. Compliant control of threaded fastener inser-
tion in [1993] Proceedings IEEE International Conference on Robotics
and Automation (1993), 484-490 vol.1. doi:10 . 1109 /ROBOT . 1993 .
292026.

Ang, M. & Andeen, G. Specifying and achieving passive compliance
based on manipulator structure. IEEE Transactions on Robotics and
Automation 11, 504-515. doi:10.1109/70.406934 (1995).

Tang, L., Jia, Y.-B. & Xue, Y. Robotic Manipulation of Hand Tools:
The Case of Screwdriving in 2024 IEEE International Conference on
Robotics and Automation (ICRA) (2024), 13883-13890. doi:10.1109/
ICRA57147.2024.10610831.

Klingajay, M. & Giannoccaro, N. Comparison between least square €
Newton Raphson for estimation parameters of an autonomous threaded
fastenings in IEEE International Conference on Industrial Technology,
2005 1 (2003), 163-168 Vol.1. doi:10.1109/ICIT.2003.1290261.
Matsuno, T., Huang, J. & Fukuda, T. Fault detection algorithm for
external thread fastening by robotic manipulator using linear support
vector machine classifier in 2018 IEEE International Conference on
Robotics and Automation (2013), 3443-3450. doi:10.1109/ICRA.2013.
6631058.

Wilson, W. C., Rogge, M. D., Fisher, B. H., Malocha, D. C. & Atkinson,
G. M. Fastener Failure Detection Using a Surface Acoustic Wave Strain

281

https://doi.org/10.1109/DASA63652.2024.10836165
https://doi.org/10.1109/ICRA48891.2023.10161139
https://doi.org/10.1109/ICCAS.2014.6987891
https://doi.org/10.1007/s00170-018-2363-5
https://doi.org/https://doi.org/10.1016/j.actaastro.2022.07.048
https://doi.org/10.1109/TASE.2024.3406772
https://doi.org/10.1109/TASE.2024.3406772
https://doi.org/10.1109/ROBOT.1993.292026
https://doi.org/10.1109/ROBOT.1993.292026
https://doi.org/10.1109/70.406934
https://doi.org/10.1109/ICRA57147.2024.10610831
https://doi.org/10.1109/ICRA57147.2024.10610831
https://doi.org/10.1109/ICIT.2003.1290261
https://doi.org/10.1109/ICRA.2013.6631058
https://doi.org/10.1109/ICRA.2013.6631058

189.

190.

191.

192.

193.

194.

195.

196.

197.

Sensor. IEEFE Sensors Journal 12, 1993-2000. doi:10.1109/JSEN.2011.
2181160 (2012).

losifidis, A. Detecting Faults During Automatic Screwdriving: A Dataset
and Use Case of Anomaly Detection for Automatic Screwdriving in To-
wards Sustainable Customization: Bridging Smart Products and Man-
ufacturing Systems: Proceedings of the 8th Changeable, Agile, Recon-
figurable and Virtual Production Conference (CARV2021) and the 10th
World Mass Customization € Personalization Conference (MCPC2021),
Aalborg, Denmark, October/November 2021 (2021), 224.

Althoefer, K., Lara, B., Zweiri, Y. H. & Seneviratne, L. D. Automated
failure classification for assembly with self-tapping threaded fastenings
using artificial neural networks. Proceedings of the Institution of Me-
chanical Engineers, Part C: Journal of Mechanical Engineering Science
222, 1081-1095. doi:10.1243/09544062jmes546 (2008).

Moreira, G. R., Lahr, G. J. G., Boaventura, T., Savazzi, J. O. & Caurin,
G. A. P. Online prediction of threading task failure using Convolutional
Neural Networks in 2018 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS) (2018), 2056-2061. doi:10.1109/
TR0OS.2018.8594501.

Vudiéevié, O., Li, C. & Zakeriharandi, M. Time-Series Anomaly Detec-
tion for Industrial Screwdriving Task with Machine Learning Algorithms
MA thesis (Aalborg University, 2023).

Yang, Z., Yazdi, P. G. & Thiede, S. Machine-learning-enabled Decision
Support for Screwdriving Process in 2024 IEEE 22nd International Con-
ference on Industrial Informatics (INDIN) (2024), 1-6. doi:10.1109/
INDING8382.2024.10774335.

Wende, M., Bender, M., Frye, M., Grunert, D. & Schmitt, R. H. ML-
Pipeline for the Quality Assessment of Screwdriving Processes. Pro-
cedia CIRP 126. 17th CIRP Conference on Intelligent Computation
in Manufacturing Engineering (CIRP ICME ‘23), 951-956. doi:https:
//doi.org/10.1016/j .procir.2024.08.362 (2024).

Ribeiro, D., Matos, L. M., Moreira, G., Pilastri, A. & Cortez, P. Isolation
forests and deep autoencoders for industrial screw tightening anomaly
detection. Computers 11, 54 (2022).

Ferhat, M., Ritou, M., Leray, P. & Le Du, N. Incremental discovery of
new defects: application to screwing process monitoring. CIRP Annals
70, 369-372. doi:https://doi.org/10.1016/j.cirp.2021.04.026
(2021).

Cheng, X., Jia, Z. & Mason, M. T. Data-Efficient Process Monitoring
and Failure Detection for Robust Robotic Screwdriving in 2019 IEEE
15th International Conference on Automation Science and Engineering
(CASE) (2019), 1705-1711. doi:10.1109/COASE. 2019 .8842854.

282

https://doi.org/10.1109/JSEN.2011.2181160
https://doi.org/10.1109/JSEN.2011.2181160
https://doi.org/10.1243/09544062jmes546
https://doi.org/10.1109/IROS.2018.8594501
https://doi.org/10.1109/IROS.2018.8594501
https://doi.org/10.1109/INDIN58382.2024.10774335
https://doi.org/10.1109/INDIN58382.2024.10774335
https://doi.org/https://doi.org/10.1016/j.procir.2024.08.362
https://doi.org/https://doi.org/10.1016/j.procir.2024.08.362
https://doi.org/https://doi.org/10.1016/j.cirp.2021.04.026
https://doi.org/10.1109/COASE.2019.8842854

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

Shiue, Y.-R. Development of two-level decision tree-based real-time schedul-
ing system under product mix variety environment . Robotics and Computer-

Integrated Manufacturing 25, 709-720. doi:https://doi.org/10.
1016/j.rcim.2008.06.002 (2009).

Cheng, X., Jia, Z., Bhatia, A., Aronson, R. M. & Mason, M. T. Sen-
sor selection and stage & result classifications for automated miniature
screwdriving in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2018), 6078-6085.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J. &
Battaglia, P. Learning to simulate complex physics with graph networks
in International conference on machine learning (2020), 8459-8468.
Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D., et al. Interac-
tion networks for learning about objects, relations and physics. Advances
in neural information processing systems 29 (2016).

Nagabandi, A., Konolige, K., Levine, S. & Kumar, V. Deep Dynam-
ics Models for Learning Dexterous Manipulation in Proceedings of the
Conference on Robot Learning 100 (PMLR, 2020), 1101-1112.

Lusch, B., Kutz, J. N. & Brunton, S. L. Deep learning for universal
linear embeddings of nonlinear dynamics. Nature Communications 9,
4950. doi:10.1038/s41467-018-07210-0 (2018).

Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing
equations from data by sparse identification of nonlinear dynamical sys-
tems. Proceedings of the National Academy of Sciences 113, 3932—-3937.
doi:10.1073/pnas. 1517384113 (2016).

Zhao, Z., Li, Y., Liu, C. & Liu, X. Predicting part deformation based on
deformation force data using Physics-informed Latent Variable Model.

Robotics and Computer-Integrated Manufacturing 72, 102204. doi:https:

//doi.org/10.1016/j.rcim.2021.102204 (2021).

Raissi, M., Perdikaris, P. & Karniadakis, G. Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. Journal of
Computational Physics 378, 686-707. doichttps://doi.org/10.1016/
j.jcp.2018.10.045 (2019).

Djeumou, F., Neary, C., Goubault, E., Putot, S. & Topcu, U. Neural
Networks with Physics-Informed Architectures and Constraints for Dy-
namical Systems Modeling in Proceedings of The 4th Annual Learning
for Dynamics and Control Conference 168 (PMLR, 2022), 263-277.
Kaiser, E., Kutz, J. N. & Brunton, S. L. Sparse identification of non-
linear dynamics for model predictive control in the low-data limit. Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 474, 20180335. doi:10.1098/rspa.2018.0335 (2018).
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S.
& Yang, L. Physics-informed machine learning. Nature Reviews Physics
3, 422-440. doi:10.1038/s42254-021-00314-5 (2021).

283

https://doi.org/https://doi.org/10.1016/j.rcim.2008.06.002
https://doi.org/https://doi.org/10.1016/j.rcim.2008.06.002
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1073/pnas.1517384113
https://doi.org/https://doi.org/10.1016/j.rcim.2021.102204
https://doi.org/https://doi.org/10.1016/j.rcim.2021.102204
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1098/rspa.2018.0335
https://doi.org/10.1038/s42254-021-00314-5

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

Champion, K., Lusch, B., Kutz, J. N. & Brunton, S. L. Data-driven
discovery of coordinates and governing equations. Proceedings of the
National Academy of Sciences 116, 22445-22451. doi:10.1073/pnas .
1906995116 (2019).

Brunton, S. L. & Kutz, J. N. Data-Driven Science and Engineering:
Machine Learning, Dynamical Systems, and Control 2nd ed. doi:10 .
1017/9781009089517 (Cambridge University Press, 2022).
Giannoccaro, N. & Klingajay, M. Identification of threaded fastening pa-
rameters based on least square method in SICE 2004 Annual Conference
3 (2004), 25922597 vol. 3.

Bhatt, P. M., Malhan, R. K., Rajendran, P., Shah, B. C., Thakar, S.,
Yoon, Y. J., et al. Image-Based Surface Defect Detection Using Deep
Learning: A Review. Journal of Computing and Information Science in
Engineering 21. 040801. doi:10.1115/1.4049535 (2021).

Wu, Y., Sicard, B. & Gadsden, S. A. Physics-informed machine learn-
ing: a comprehensive review on applications in anomaly detection and
condition monitoring. Expert Systems with Applications, 124678 (2024).
Sucan, I. A., Moll, M. & Kavraki, L. E. The open motion planning
library. IEEE Robotics € Automation Magazine 19, 72-82 (2012).
Huber, M., Mower, C. E., Ourselin, S., Vercauteren, T. & Bergeles, C.
LBR-Stack: ROS 2 and Python Integration of KUKA FRI for Med and
IIWA Robots. Journal of Open Source Software 9, 6138. doi:10.21105/
joss.06138 (2024).

Macenski, S., Foote, T., Gerkey, B., Lalancette, C. & Woodall, W. Robot
operating system 2: Design, architecture, and uses in the wild. Science
robotics 7, eabm6074 (2022).

Wang, J., Li, Y., Gao, R. X. & Zhang, F. Hybrid physics-based and
data-driven models for smart manufacturing: Modelling, simulation, and
explainability. Journal of Manufacturing Systems 63, 381-391 (2022).
Boothroyd, G. Assembly Automation and Product Design doi:10.1201/
9781420027358 (CRC Press, 2005).

Bradski, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., et al. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research 12, 2825-2830 (2011).

Shome, R., Tang, W. N., Song, C., Mitash, C., Kourtev, H., Yu, J., et
al. Towards Robust Product Packing with a Minimalistic End-Effector
in 2019 International Conference on Robotics and Automation (ICRA)
(2019), 9007-9013. doi:10.1109/ICRA.2019.8793966.

Agarwal, M., Biswas, S., Sarkar, C., Paul, S. & Paul, H. S. Jampacker:
An Efficient and Reliable Robotic Bin Packing System for Cuboid Ob-
jects. IEEFE Robotics and Automation Letters 6, 319-326. doi:10.1109/
LRA.2020.3043168 (2021).

284

https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1017/9781009089517
https://doi.org/10.1017/9781009089517
https://doi.org/10.1115/1.4049535
https://doi.org/10.21105/joss.06138
https://doi.org/10.21105/joss.06138
https://doi.org/10.1201/9781420027358
https://doi.org/10.1201/9781420027358
https://doi.org/10.1109/ICRA.2019.8793966
https://doi.org/10.1109/LRA.2020.3043168
https://doi.org/10.1109/LRA.2020.3043168

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

Yang, Z., Yang, S., Song, S., Zhang, W., Song, R., Cheng, J., et al.
PackerBot: Variable-Sized Product Packing with Heuristic Deep Rein-
forcement Learning in 2021 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS) (2021), 5002-5008. doi:10.1109/
TR0S51168.2021.9635914.

Kadian, A., Truong, J., Gokaslan, A., Clegg, A., Wijmans, E., Lee, S., et
al. Sim2Real Predictivity: Does Evaluation in Simulation Predict Real-
World Performance? IEEE Robotics and Automation Letters 5, 6670—
6677. doi:10.1109/LRA.2020.3013848 (2020).

Chen, H., Niu, Y., Hong, K., Liu, S., Wang, Y., Li, Y., et al. Predicting
Object Interactions with Behavior Primitives: An Application in Stowing
Tasks in 7th Annual Conference on Robot Learning (2023).

Shen, B., Jiang, Z., Choy, C., Savarese, S., Guibas, L. J., Anandkumar,
A., et al. Action-conditional implicit visual dynamics for deformable
object manipulation. The International Journal of Robotics Research
43, 437-455. doi:10.1177/02783649231191222 (2024).

Liu, F., Su, E., Lu, J., Li, M. & Yip, M. C. Robotic manipulation
of deformable rope-like objects using differentiable compliant position-
based dynamics. IEEE Robotics and Automation Letters (2023).
Thakar, S., Kabir, A., Bhatt, P. M., Malhan, R. K., Rajendran, P.,
Shah, B. C., et al. Task assignment and motion planning for bi-manual
mobile manipulation in 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE) (2019), 910-915.

Avigal, Y., Berscheid, L., Asfour, T., Kroger, T. & Goldberg, K. SpeedFolding:

Learning Efficient Bimanual Folding of Garments in 2022 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (2022),

1-8. doi:10.1109/IR0S47612.2022.9981402.

Chiu, Z.-Y., Richter, F., Funk, E. K., Orosco, R. K. & Yip, M. C. Biman-
ual regrasping for suture needles using reinforcement learning for rapid
motion planning in 2021 IEEE International Conference on Robotics
and Automation (ICRA) (2021), 7737-7743.

Chitnis, R., Tulsiani, S., Gupta, S. & Gupta, A. Efficient bimanual
manipulation using learned task schemas in 2020 IEEFE International
Conference on Robotics and Automation (ICRA) (2020), 1149-1155.
Shi, J. & Koonjul, G. S. Real-time grasping planning for robotic bin-
picking and kitting applications. IEFE Transactions on Automation Sci-
ence and Engineering 14, 809-819 (2017).

Kagerer, F., Beinhofer, M., Stricker, S. & Niichter, A. BED-BPP: Bench-
marking dataset for robotic bin packing problems. The International
Journal of Robotics Research 42, 1007-1014. doi:\allowbreak10.1177/
02783649231193048\allowbreak (2023).

Weng, C.-Y., Yin, W., Lim, Z. J. & Chen, I.-M. A Framework for Robotic
Bin Packing with a Dual-Arm Configuration in Advances in Mechanism,
and Machine Science (ed Uhl, T.) (Springer International Publishing,
Cham, 2019), 2799-2808.

285

https://doi.org/10.1109/IROS51168.2021.9635914
https://doi.org/10.1109/IROS51168.2021.9635914
https://doi.org/10.1109/LRA.2020.3013848
https://doi.org/10.1177/02783649231191222
https://doi.org/10.1109/IROS47612.2022.9981402
https://doi.org/\allowbreak 10.1177/02783649231193048 \allowbreak
https://doi.org/\allowbreak 10.1177/02783649231193048 \allowbreak

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

Wang, F. & Hauser, K. Stable Bin Packing of Non-convexr 3D Objects
with a Robot Manipulator in 2019 International Conference on Robotics
and Automation (ICRA) (2019), 8698-8704. doi:10.1109/ICRA.2019.
8794049.

Yang, S., Song, S., Chu, S., Song, R., Cheng, J., Li, Y., et al. Heuristics
Integrated Deep Reinforcement Learning for Online 3D Bin Packing.
IEEE Transactions on Automation Science and Engineering 21, 939—
950. doi:10.1109/TASE.2023.3235742 (2024).

Zuo, Q., Liu, X., Xu, L., Xiao, L., Xu, C., Liu, J., et al. The Three-
dimensional Bin Packing Problem for Deformable Items in 2022 IEEE
International Conference on Industrial Engineering and Engineering
Management (IEEM) (2022), 0911-0918. doi:10 . 1109 / IEEM55944 .
2022.9989600.

Ma, W., Zhang, B., Han, L., Huo, S., Wang, H. & Navarro-Alarcon, D.
Action Planning for Packing Long Linear Elastic Objects into Compact
Boxes with Bimanual Robotic Manipulation. IEEE/ASME Transactions
on Mechatronics (2022).

Li, S., Keipour, A., Jamieson, K., Hudson, N., Swan, C. & Bekris, K.
Demonstrating Large-Scale Package Manipulation via Learned Metrics
of Pick Success in Proceedings of Robotics: Science and Systems (Daegu,
Republic of Korea, 2023). doi:10.15607/RSS.2023.XIX.023.

Bahety, A., Jain, S., Ha, H., Hager, N., Burchfiel, B., Cousineau, E.,
et al. Bag All You Need: Learning a Generalizable Bagging Strategy for
Heterogeneous Objects in 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2023), 960-967. doi:10.1109/
TR0S55552.2023.10341841.

Chen, L. Y., Shi, B., Seita, D., Cheng, R., Kollar, T., Held, D., et al.
AutoBag: Learning to Open Plastic Bags and Insert Objects in 2023
IEEE International Conference on Robotics and Automation (ICRA)
(2023), 3918-3925. doi:10.1109/ICRA48891.2023.10161402.

Charles, R. Q., Su, H., Kaichun, M. & Guibas, L. J. PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation in 2017
IEEFE Conference on Computer Vision and Pattern Recognition (CVPR)
(2017), 77-85. doi:10.1109/CVPR.2017 . 16.

Heiden, E., Millard, D., Coumans, E., Sheng, Y. & Sukhatme, G. S.
NeuralSim: Augmenting Differentiable Simulators with Neural Networks
in 2021 IEEFE International Conference on Robotics and Automation
(ICRA) (2021), 9474-9481. do0i:10.1109/ICRA48506.2021.9560935.
Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algo-
rithm for discovering clusters in large spatial databases with noise in
Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining (AAAT Press, Portland, Oregon, 1996), 226—
231. doi:10.5555/3001460.3001507.

Aratjo, A. M. C. & Oliveira, M. M. A robust statistics approach for
plane detection in unorganized point clouds. Pattern Recognition 100,

286

https://doi.org/10.1109/ICRA.2019.8794049
https://doi.org/10.1109/ICRA.2019.8794049
https://doi.org/10.1109/TASE.2023.3235742
https://doi.org/10.1109/IEEM55944.2022.9989600
https://doi.org/10.1109/IEEM55944.2022.9989600
https://doi.org/10.15607/RSS.2023.XIX.023
https://doi.org/10.1109/IROS55552.2023.10341841
https://doi.org/10.1109/IROS55552.2023.10341841
https://doi.org/10.1109/ICRA48891.2023.10161402
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/ICRA48506.2021.9560935
https://doi.org/10.5555/3001460.3001507

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

107115. doi:https://doi.org/10.1016/j . patcog.2019.107115
(2020).

Todorov, E., Erez, T. & Tassa, Y. MuJoCo: A physics engine for model-
based control in 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (2012), 5026-5033. doi:10.1109/IR0S.2012.
6386109.

Jie, L., Siwei, L., Qingyong, L., Hanqing, Z. & Shengwei, R. Real-time
rail head surface defect detection: A geometrical approach in IEEE Inter-
national Symposium on Industrial Electronics (2009), 769-774. doi:10.
1109/ISIE.2009.5214088.

Cui, Y., Jin, J. S., Luo, S., Park, M. & Au, S. S. Automated Pattern
Recognition and Defect Inspection System in Fifth International Con-
ference on Image and Graphics (2009). doi:10.1109/ICIG.2009.144.
livarinen, J. Surface defect detection with histogram-based texture fea-
tures in SPIE Optics East (2000).

Xue-wu, Z., Yan-qiong, D., Yan-yun, L., Ai-ye, S. & Rui-yu, L. A Vision
Inspection System for the Surface Defects of Strongly Reflected Metal
Based on Multi-Class SVM. Expert Syst. Appl. 38, 5930-5939. doi:10.
1016/j.eswa.2010.11.030 (2011).

Masci, J., Meier, U., Ciresan, D., Schmidhuber, J. & Fricout, G. Steel
defect classification with Maz-Pooling Convolutional Neural Networks in
The 2012 International Joint Conference on Neural Networks (IJCNN)
(2012), 1-6. doi:10.1109/IJCNN.2012.6252468.

Yun, J. P., Choi, S., Jeon, Y.-j., Choi, D.-c. & Kim, S. W. Detection of
line defects in steel billets using undecimated wavelet transform in 2008
International Conference on Control, Automation and Systems (2008),
1725-1728. doi:10.1109/ICCAS.2008.4694506.

Aziz, M. A., Haggag, A. S. & Sayed, M. S. Fabric defect detection algo-
rithm using morphological processing and DCT in 2013 1st International
Conference on Communications, Signal Processing, and their Applica-
tions (ICCSPA) (2013), 1-4. doi:10.1109/ICCSPA.2013.6487269.

Mei, H., Jiang, H., Yin, F., Wang, L. & Farzaneh, M. Terahertz Imaging
Method for Composite Insulator Defects Based on Edge Detection Al-
gorithm. IEEE Transactions on Instrumentation and Measurement 70,
1-10. d0i:10.1109/TIM.2021.3075031 (2021).

He, Y., Song, K., Meng, Q. & Yan, Y. An End-to-End Steel Surface
Defect Detection Approach via Fusing Multiple Hierarchical Features.
IEEE Transactions on Instrumentation and Measurement 69, 1493—
1504. doi:10.1109/TIM.2019.2915404 (2020).

Li, F., Li, F. & Xi, Q. DefectNet: Toward Fast and Effective Defect De-
tection. IEEE Transactions on Instrumentation and Measurement 70,
1-9. doi:10.1109/TIM.2021.3067221 (2021).

Xu, L., Lv, S., Deng, Y. & Li, X. A Weakly Supervised Surface De-
fect Detection Based on Convolutional Neural Network. IEFEE Access
8, 42285-42296. doi:10.1109/ACCESS.2020.2977821 (2020).

287

https://doi.org/https://doi.org/10.1016/j.patcog.2019.107115
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/ISIE.2009.5214088
https://doi.org/10.1109/ISIE.2009.5214088
https://doi.org/10.1109/ICIG.2009.144
https://doi.org/10.1016/j.eswa.2010.11.030
https://doi.org/10.1016/j.eswa.2010.11.030
https://doi.org/10.1109/IJCNN.2012.6252468
https://doi.org/10.1109/ICCAS.2008.4694506
https://doi.org/10.1109/ICCSPA.2013.6487269
https://doi.org/10.1109/TIM.2021.3075031
https://doi.org/10.1109/TIM.2019.2915404
https://doi.org/10.1109/TIM.2021.3067221
https://doi.org/10.1109/ACCESS.2020.2977821

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

Sreedhar, U., Krishnamurthy, C., Balasubramaniam, K., Raghupathy,
V. & Ravisankar, S. Automatic defect identification using thermal image
analysis for online weld quality monitoring. Journal of Materials Pro-
cessing Technology 212, 1557-1566. doi:https://doi.org/10.1016/j.
jmatprotec.2012.03.002 (2012).

Li, Y., Cheng, Y., Gan, Z., Yu, L., Wang, L. & Liu, J. BachGAN: High-
Resolution Image Synthesis From Salient Object Layout in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2020).

Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil,
C., et al. Training deep networks with synthetic data: Bridging the reality
gap by domain randomization in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops (2018),
969-977.

Lin, J., Zhang, R., Ganz, F., Han, S. & Zhu, J.-Y. Anycost GANs for In-
teractive Image Synthesis and Editing in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2021),
14986-14996.

Schraml, D. Physically based synthetic image generation for machine
learning: a review of pertinent literature in Photonics and Education in
Measurement Science 2019 (eds Zagar, B., Mazurek, P., Rosenberger,
M. & Dittrich, P.-G.) (SPIE, 2019). doi:10.1117/12.2533485.
Figueira, A. & Vaz, B. Survey on Synthetic DataGeneration, Evalua-
tion Methods and GANs. Mathematics 10. doi:10.3390/math10152733
(2022).

He, K., Gkioxari, G., Dollar, P. & Girshick, R. Mask R-CNN in 2017
IEEE International Conference on Computer Vision (ICCV) (2017),
2980-2988. do0i:10.1109/ICCV.2017.322.

Community, B. O. Blender - a 3D modelling and rendering package
Blender Foundation (Stichting Blender Foundation, Amsterdam, 2018).
Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for
Large-Scale Image Recognition in 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings (eds Bengio, Y. & LeCun, Y.) (2015).
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.
Going deeper with convolutions in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2015), 1-9. doi:10 . 1109/
CVPR.2015.7298594.

Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely
Connected Convolutional Networks in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2017).
Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B. & Belongie,
S. Feature Pyramid Networks for Object Detection in 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2017),
936-944. doi:10.1109/CVPR.2017.106.

288

https://doi.org/https://doi.org/10.1016/j.jmatprotec.2012.03.002
https://doi.org/https://doi.org/10.1016/j.jmatprotec.2012.03.002
https://doi.org/10.1117/12.2533485
https://doi.org/10.3390/math10152733
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2017.106

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., et al. Microsoft COCO: Common Objects in Context in Computer
Vision — ECCV 2014 (Springer International Publishing, Cham, 2014),
740-755.

Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., et al. MMDetec-
tion: Open MMLab Detection Toolbox and Benchmark. arXiv preprint
arXiw:1906.07155 (2019).

Tzeng, E., Devin, C., Hoffman, J., Finn, C., Abbeel, P., Levine, S., et al.
Adapting deep visuomotor representations with weak pairwise constraints
in Algorithmic Foundations of Robotics XII: Proceedings of the Twelfth
Workshop on the Algorithmic Foundations of Robotics (2020), 688-703.
Pashevich, A., Strudel, R., Kalevatykh, I., Laptev, I. & Schmid, C.
Learning to Augment Synthetic Images for Sim2Real Policy Transfer.
CoRR abs/1903.07740 (2019).

Sajjan, S., Moore, M., Pan, M., Nagaraja, G., Lee, J., Zeng, A., et al.
Clear grasp: 3d shape estimation of transparent objects for manipulation
in 2020 IEEE International Conference on Robotics and Automation
(ICRA) (2020), 3634-3642.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J. & Zisserman,
A. The Pascal Visual Object Classes (VOC) Challenge. International
Journal of Computer Vision 88, 303-338 (2010).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
et al. in Advances in Neural Information Processing Systems 32 (eds
Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.
& Garnett, R.) 8024-8035 (Curran Associates, Inc., 2019).

Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Zhang, Z., Lin, H., et al. ResNeSt:
Split-Attention Networks. arXiv preprint arXiv:2004.08955 (2020).
Cai, Z. & Vasconcelos, N. Cascade R-CNN: High Quality Object Detec-
tion and Instance Segmentation. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence 43, 1483-1498. doi:10.1109/TPAMI.2019.
2956516 (2021).

Ganaie, M. A., Hu, M., Tanveer, M. & Suganthan, P. N. Ensemble deep
learning: A review. CoRR abs/2104.02395 (2021).

289

https://doi.org/10.1109/TPAMI.2019.2956516
https://doi.org/10.1109/TPAMI.2019.2956516

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Abstract
	Chapter Introduction
	Background
	Motivation
	Research Issues
	Objectives and Scope

	Chapter Foundations and Overview
	Taxonomy of Deformable Objects
	Physics-Informed Learning Paradigm
	Overview and Structure

	Chapter Learning Simulation Parameters for Large, Sheet-like Deformable Objects
	Introduction
	Related Work
	Simulation Model Description
	Tensile and Shear Forces
	Bending Forces

	Estimating Sheet Parameters
	Overview
	Acquisition of Training and Testing Data
	Sheet Preparation
	Sheet Deformation Data Generation

	Model Parameter Estimation
	Sheet Simulation System
	Parameter Boundary Selection
	Optimization Algorithm

	Results
	Experimental Specifics
	Sheet Parameter Estimation
	Sheet Simulation

	Summary

	Chapter High-Fidelity Simulation of Shell-Like Deformable Objects Using FEM
	Introduction
	Related Works
	Deformable Object Simulation
	System Identification and Policy Learning

	Problem Formulation
	Methodology
	Overview
	System Representation
	Simulation Framework
	Real-to-Sim Parameter Identification

	Manipulation Policy Learning
	Experiments and Data Collection
	Experimental Design
	Processing of Motion Capture Data

	Results
	Parameter Estimation Results
	Optimization Performance Analysis
	Simulation Performance Metrics

	Discussions
	Summary

	Chapter Graph-Based Neural Dynamics of Shell-Like Deformable Objects
	Introduction
	Related Works
	Graph-based Representation
	Message Passing Overview
	Graph-based Neural Dynamics Model
	Node Encoder
	Edge Encoder
	Global Encoder
	Dynamics Decoder
	Model-Training

	Experiments
	Results
	Summary

	Chapter Learning Task Sequencing Policies for Deformable Object Manipulation
	Introduction
	Related Work
	Problem Formulation
	Method
	Estimating Feature Interaction Coverage
	Graph-based State Sequence Representation
	Loss function for performance-based preferences
	Learning performance-based preference
	Learning Effort-based Preference

	Data Collection
	Results
	Summary

	Chapter Simulation-based Grasp Planning for Deformable Objects
	Introduction
	Related Work
	Problem Formulation
	Grasp Planning
	State Space Discretization
	Bounding the Search Space
	Graph Construction
	Grasp Plan Generation
	Results on Representative Examples

	Intervention Controller
	Overview
	Constraint Violation Monitoring
	Control Actions
	Results

	Summary

	Chapter Learning the Effect of Compliance on Manipulation under Uncertainty
	Introduction
	Background
	Related Work
	Robotics and Automation in Screwdriving
	Defect Detection for Screwdriving Operations
	Dynamics Modeling for Screw-tip Motion

	System Overview
	Mobile-Manipulator-based Robotic Screwdriving System
	Software System Architecture
	Planning and Control
	Perception and Sensing

	System Operation

	Physics-Informed Discovery of Screw Tip Dynamics
	Model Definition

	Failure Mode Detection
	Data Augmentation and Pre-processing
	Feature Extraction
	Decision Tree-based Defect Detection

	Experiments and Results
	Experimental Setup and Test Parts
	Dynamics Model Evaluation
	Predicting Time to Completion with Dynamics Model
	Failure Detection Results

	Summary

	Chapter Bi-manual Manipulation for Shell-like Deformable Objects
	Introduction
	Related Work
	Bimanual Robot Setup for Packaging
	Problem Formulation
	Approach
	Packaging Pipeline as a Finite State Machine (FSM)
	Learning Packing Score Function
	Learning Optimal Robot Actions

	Experiments
	Real-World Experiments
	Simulation Experiments

	Results
	Failure State Estimation and Packing Score Predictions on Real Data
	Action Prediction Performance
	Bin-packing Performance:
	Sensitivity Analysis:
	Simulation Results:

	Summary

	Chapter Anomaly and Failure Detection for Deformable Objects
	Introduction
	Overview of Approach
	Real Image Collection
	Synthetic Image Generation
	Physics Based Simulator
	Data sampling
	CGI Pipeline

	Data Preparation
	Model Description
	Model Architecture and Settings
	Training

	Results
	Training settings
	Model enhancement
	Analysis of results
	Analysis of failure cases

	Summary

	Chapter Conclusions
	Intellectual Contributions
	Anticipated Benefits
	Future Directions

	References

